
MITRE
An Employee-Owned Company

Department of Defense

High Level Architecture
Run-Time Infrastructure

Programmer’s Guide

Version 1.0

15 May 1997



RTI 1.0 Programmer’s Guide

2

TABLE OF CONTENTS

1 .  O V E R V I E W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 HIGH LEVEL ARCHITECTURE ..................................................................................................6
1.2 CONCEPTUAL MODEL OF THE MISSION SPACE ...........................................................................7
1.3 DATA STANDARDIZATION .....................................................................................................7

2 .  R T I  1 . 0  S Y S T E M  A R C H I T E C T U R E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 RUN TIME INFRASTRUCTURE (RTI) EXECUTIVE..........................................................................8
2.2 FEDERATION EXECUTIVE ......................................................................................................9
2.3 C++ LIBRARY (LIBRTI).......................................................................................................10

2.3.1 C++ Application Programming Interface (API)..................................................................10
2.3.2 Memory Allocation Conventions....................................................................................10
2.3.3 Data Marshaling..........................................................................................................11
2.3.4 Internal Software Design...............................................................................................11

2.4 CONFIGURATION AND INPUT FILES........................................................................................13
2.4.1 Run-time Initialization Data (RID)..................................................................................13
2.4.2 Federation Execution Data (FED)....................................................................................15

3 .  H L A  S E R V I C E  T O  C + +  M A P P I N G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 5

3.1 FEDERATION MANAGEMENT................................................................................................25
3.1.1 Create Federation Execution...........................................................................................26
3.1.2 Destroy Federation Execution.........................................................................................28
3.1.3 Join Federation Execution..............................................................................................30
3.1.4 Resign Federation Execution..........................................................................................33
3.1.5 Request Pause.............................................................................................................36
3.1.6 Initiate Pause +...........................................................................................................38
3.1.7 Pause Achieved............................................................................................................40
3.1.8 Request Resume..........................................................................................................42
3.1.9 Initiate Resume +........................................................................................................44
3.1.10 Resume Achieved.......................................................................................................45
3.1.11 Request Federation Save..............................................................................................47
3.1.12 Initiate Federate Save +...............................................................................................49
3.1.13 Federate Save Begun...................................................................................................51
3.1.14 Federate Save Achieved................................................................................................53
3.1.15 Request Restore.........................................................................................................55
3.1.16 Initiate Restore +.......................................................................................................57
3.1.17 Restore Achieved........................................................................................................59

3.2 DECLARATION MANAGEMENT..............................................................................................61
3.2.1 Publish Object Class....................................................................................................62
3.2.2 Publish Interaction Class...............................................................................................65
3.2.3 Subscribe Object Class Attribute....................................................................................67
3.2.4 Subscribe Interaction Class............................................................................................71
3.2.5 Control Updates +........................................................................................................74
3.2.6 Control Interactions +...................................................................................................76

3.3 OBJECT MANAGEMENT .......................................................................................................78
3.3.1 Request ID..................................................................................................................79
3.3.2 Register Object............................................................................................................81
3.3.3 Update Attribute Values................................................................................................83
3.3.4 Discover Object +........................................................................................................86
3.3.5 Reflect Attribute Values +.............................................................................................88
3.3.6 Send Interaction...........................................................................................................90
3.3.7 Receive Interaction +....................................................................................................92



RTI 1.0 Programmer’s Guide

3

3.3.8 Delete Object..............................................................................................................94
3.3.9 Remove Object +.........................................................................................................96
3.3.10 Change Attribute Transportation Type............................................................................99
3.3.11 Change Attribute Order Type.......................................................................................102
3.3.12 Change Interaction Transportation Type.........................................................................105
3.3.13 Change Interaction Order Type.....................................................................................107
3.3.14 Request Attribute Value Update....................................................................................109
3.3.15 Provide Attribute Value Update +.................................................................................112
3.3.16 Retract....................................................................................................................114
3.3.17 Reflect Retraction +...................................................................................................116

3.4 OWNERSHIP MANAGEMENT ................................................................................................118
3.4.1 Request Attribute Ownership Divestiture.........................................................................119
3.4.2 Request Attribute Ownership Assumption +....................................................................123
3.4.3 Attribute Ownership Divestiture Notification +................................................................126
3.4.4 Attribute Ownership Acquisition Notification +................................................................128
3.4.5 Request Attribute Ownership Acquisition........................................................................130
3.4.6 Request Attribute Ownership Release +...........................................................................133
3.4.7 Query Attribute Ownership...........................................................................................135

3.5 T IME MANAGEMENT .........................................................................................................138
3.5.1 Request Federation Time..............................................................................................139
3.5.2 Request LBTS............................................................................................................140
3.5.3 Request Federate Time.................................................................................................142
3.5.4 Request Minimum Next Event Time..............................................................................144
3.5.5 Set Lookahead............................................................................................................146
3.5.6 Request Lookahead......................................................................................................148
3.5.7 Time Advance Request.................................................................................................149
3.5.8 Next Event Request.....................................................................................................152
3.5.9 Flush Queue Request...................................................................................................154
3.5.10 Time Advance Grant +...............................................................................................156

3.6 DATA DISTRIBUTION MANAGEMENT ....................................................................................158
3.7 RTI SUPPORT SERVICES .....................................................................................................159

3.7.1 Get Handle and Get Name Services.................................................................................160
3.7.2 Set Time Regulating...................................................................................................165
3.7.3 Set Time Constrained..................................................................................................167
3.7.4 Tick.........................................................................................................................169
3.7.5 dequeueFIFOasynchronously.........................................................................................171

4 .  P R O G R A M M I N G  W I T H  T H E  R T I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 2

4.1 HELLO WORLD .................................................................................................................172
4.1.1 Simulation Object Model (SOM)...................................................................................172
4.1.2 Federation Object Model (FOM)....................................................................................173
4.1.3 Federation Execution Data (FED)...................................................................................173
4.1.4 Running the Application..............................................................................................174
4.1.5 Stepping Through the Application.................................................................................175

4.2 JAGER: ANOTHER GAME EXPLOITING THE RTI (JAGER)..........................................................192

5 .  T R O U B L E S H O O T I N G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9 3



RTI 1.0 Programmer’s Guide

4

TABLE OF TABLES

TABLE 2-1: RTI EXECUTIVE CONSOLE COMMANDS .........................................................................8
TABLE 2-2: FEDERATION EXECUTIVE CONSOLE COMMANDS .............................................................9
TABLE 2-3: MANAGER::FEDERATE ATTRIBUTE DEFINITIONS ...........................................................16
TABLE 2-4: MANAGER::FEDERATION ATTRIBUTE DEFINITIONS........................................................18
TABLE 2-5: MANAGER::FEDERATE::ALERT PARAMETER DEFINITIONS...............................................18
TABLE 2-6: MANAGER::FEDERATE::SERVICELOG PARAMETER DEFINITIONS ......................................18
TABLE 2-7: MANAGER::FEDERATE::SERVICELOG::SERVICELOGARGUMENTS PARAMETER DEFINITIONS . 19
TABLE 2-8: MANAGER::FEDERATE::OBJECTINFORMATION PARAMETER DEFINITIONS...........................19
TABLE 2-9: MANAGER::FEDERATE::PUBLISHINGCLASS PARAMETER DEFINITIONS ..............................20
TABLE 2-10: MANAGER::FEDERATE::SUBSCRIBINGCLASS PARAMETER DEFINITIONS ...........................20
TABLE 2-11: MANAGER::FEDERATE:ACTION PARAMETER DEFINITIONS ............................................20
TABLE 2-12: MANAGER::FEDERATE::ACTION::REQUESTPUBLICATIONTREE PARAMETER DEFINITIONS . . .20
TABLE 2-13: MANAGER::FEDERATE::ACTION::REQUESTSUBSCRIPTIONTREE PARAMETER DEFINITIONS . .21
TABLE 2-14: MANAGER::FEDERATE:SETTIMING PARAMETER DEFINITIONS .......................................21
TABLE 2-15: MANAGER::FEDERATE::ACTION::REQUESTOBJECTINFORMATION PARAMETER DEFINITIONS 21
TABLE 2-16: MANAGER::FEDERATE::ACTION::MODIFYATTRIBUTESTATE PARAMETER DEFINITIONS......22
TABLE 2-17:

MANAGER::FEDERATE::ACTION::REMOTESERVICEINVOCATION::DORESIGNFEDERATIONEXECUTION

PARAMETER DEFINITIONS ..................................................................................................22
TABLE 2-18: MANAGER::FEDERATE::ACTION::REMOTESERVICEINVOCATION::DODELETEOBJECT

PARAMETER DEFINITIONS ..................................................................................................22
TABLE 2-19: MANAGER::FEDERATE::ACTION::REMOTESERVICEINVOCATION::DOSETLOOKAHEAD

PARAMETER DEFINITIONS ..................................................................................................23
TABLE 2-20: MANAGER::FEDERATE::ACTION::REMOTESERVICEINVOCATION::DOSETTIMECONSTRAINED

PARAMETER DEFINITIONS ..................................................................................................23
TABLE 2-21: MANAGER::FEDERATE::ACTION::REMOTESERVICEINVOCATION::DOTURNREGULATIONON

PARAMETER DEFINITIONS ..................................................................................................23
TABLE 2-22: MANAGER::FEDERATE::ACTION::REMOTESERVICEINVOCATION::DOTURNREGULATIONOFF

PARAMETER DEFINITIONS ..................................................................................................24
TABLE 3-23: FEDERATION MANAGEMENT SERVICES......................................................................25
TABLE 3-24: DECLARATION MANAGEMENT SERVICES....................................................................61
TABLE 3-25:  OBJECT MANAGEMENT SERVICES ............................................................................78
TABLE 3-26: OWNERSHIP MANAGEMENT SERVICES ......................................................................118
TABLE 3-27: TIME MANAGEMENT SERVICES ...............................................................................138
TABLE 3-28: DATA DISTRIBUTION MANAGEMENT SERVICES ..........................................................158
TABLE 3-29: RTI SUPPORT SERVICES.........................................................................................159
TABLE 4-4-1: HLA SERVICES USED IN HELLO WORLD...................................................................172
TABLE 4-4-2: HELLO WORLD OBJECT CLASS STRUCTURE ...............................................................172
TABLE 4-4-3: HELLO WORLD OBJECT INTERACTION TABLE ............................................................173
TABLE 4-4-4: HELLO WORLD ATTRIBUTE/PARAMETER TABLE ........................................................173



RTI 1.0 Programmer’s Guide

5

TABLE OF FIGURES

FIGURE 2-1:  RTI 1.0 SYSTEM ARCHITECTURE ...............................................................................8
FIGURE 2-2:  RELIABLE UPDATE ATTRIBUTE VALUE & SEND INTERACTION COMMUNICATION................9
FIGURE 2-3:  RTI 1.0 C++ INTERFACE........................................................................................10
FIGURE 2-4:  RTI 1.0 INTERNAL ARCHITECTURE...........................................................................12
FIGURE 2-5:  FEDERATE EVENT LOOP EXAMPLE ...........................................................................13
FIGURE 2-6: EXAMPLE RTI.RID FILE ...........................................................................................15
FIGURE 2-7: FEDERATION EXECUTION DATA (FED) FILE SYNTAX ....................................................16
FIGURE 4-8: HELLO WORLD FEDERATION EXECUTION DATA (FED)................................................174
FIGURE 4-9: HELLO WORLD: SAMPLE OUTPUT OF THE APPLICATION................................................174
FIGURE 4-10: HELLOWORLD: INITIALIZING THE RTI OBJECTS........................................................175
FIGURE 4-11: HELLOWORLD: CREATING THE FEDERATION EXECUTION...........................................177
FIGURE 4-12: HELLOWORLD: JOINING A FEDERATION EXECUTION .................................................178
FIGURE 4-13: HELLOWORLD: SETTING TIME MANAGEMENT .........................................................178
FIGURE 4-14: HELLOWORLD: RUN-TIME TYPE IDENTIFICATION EXAMPLE........................................179
FIGURE 4-15: HELLOWORLD: PUBLICATION AND SUBSCRIPTION EXAMPLE .......................................180
FIGURE 4-16: HELLOWORLD: INSTANTIATION OF HLA OBJECTS .....................................................180
FIGURE 4-17: HELLOWORLD: TIME ADVANCE REQUEST EXAMPLE..................................................181
FIGURE 4-18: HELLOWORLD: PROVIDING CONTROL TO THE RTI....................................................182
FIGURE 4-19: HELLOWORLD: CONTROL UPDATES EXAMPLE ..........................................................184
FIGURE 4-20: HELLOWORLD: CONTROL INTERACTIONS EXAMPLE...................................................185
FIGURE 4-21: HELLOWORLD: DISCOVERING AN HLA OBJECT ........................................................185
FIGURE 4-22: HELLOWORLD: RECEIVING OBJECT ATTRIBUTE UPDATES ...........................................187
FIGURE 4-23: HELLOWORLD: RECEIVING INTERACTIONS ..............................................................188
FIGURE 4-24: HELLOWORLD: REMOVING HLA OBJECTS ...............................................................189
FIGURE 4-25: HELLOWORLD: RECEIVING A TIME ADVANCE GRANT................................................190
FIGURE 4-26: HELLOWORLD: UPDATING COUNTRY OBJECTS AND SENDING ATTRIBUTES AND

INTERACTIONS ................................................................................................................192



RTI 1.0 Programmer’s Guide

6

1. Overview
This document is designed to aid developers of distributed models, simulations, analysis tools, and other
applications to gain a better understanding of the High Level Architecture (HLA) and the Run-Time
Infrastructure (RTI).  This document is not intended to describe the concepts of modeling and simulation or
the HLA, but to provide a starting point for an experienced simulation developer to use the RTI. To best
understand the RTI and this programmer's guide, one should first have a familiarity with the higher-level
components and issues that comprise the Department of Defense (DoD) Modeling and Simulation Master
Plan.  This plan defines the objective of developing a Common Technical Framework for Modeling and
Simulation (M&S), consisting of three components for simulation development and interaction: the High
Level Architecture (HLA), Conceptual Model of the Mission Space (CMMS), and Data Standardization
(DS), all of which are briefly discussed below.  More detailed information can be found at the Defense
Modeling and Simulation Office's (DMSO) home page at http://www.dmso.mil.

This section provides a brief overview and recap of the HLA, CMMS, and DS.  Section 2 provides a
description of the system architecture for the 1.0 version of the RTI.  Section 3 provides a description of the
1.0 C++ classes that implement the HLA 1.1 Interface Specification.  Section 4 contains a programming
tutorial which demonstrates the use of the RTI services.  Section 5 highlights some of the common
problems which may be encountered when configuring and using the RTI.

1.1 High Level Architecture
The HLA establishes a common high-level simulation architecture to facilitate the interoperability of all
types of models and simulations among themselves and with C4I systems, as well as to facilitate the reuse
of M&S components.

HLA is defined by the following three components:
•  HLA rules: These describe the responsibilities of federates and of the Run-Time Infrastructure (RTI) in

HLA federations.  For example, federations must have a Federation Object Model (FOM) defined using
the Object Model Template format, which defines data exchanged by the RTI.  Similarly, each federate
has an HLA Simulation Object Model (SOM), defining the attributes and objects the federate updates,
reflects, sends, receives, and transfers ownership.

•  Interface specification: This defines the six service groups between the RTI and the federates.  These
service groups are: (1) Federation management: the creation, dynamic control, modification, and
deletion of a federation execution; (2) Declaration management: the intent to publish and subscribe to
object attributes and interactions; (3) Object management: the creation and deletion of object instances
and the communication of attributes and interactions; (4) Ownership management: the transfer of
ownership of object attributes.; (5) Time management: the coordination of advances in simulation
time; and (6) Data distribution management: the support of efficient data routing.

•  Object Model Template: This is the common method for representing HLA Object Model information,
for example, information found in the Federation Object Model (FOM) and Simulation Object Model
(SOM).

Run-Time Infrastructure

The RTI is a set of software components that implement the services specified by the HLA Interface
Specification.  The RTI is the general purpose software that provides the common interface services for the
execution of an HLA federation.  The RTI provides these services to federates in a way that is analogous to
how a distributed operating system provides services to applications.

For more detailed information about HLA, please access documentation available at
http://www.dmso.mil/projects/hla.



RTI 1.0 Programmer’s Guide

7

1.2 Conceptual Model of the Mission Space
A Conceptual Model of the Mission Space (CMMS) is a first abstraction of the real world, which serves as
a common framework for knowledge acquisition with validated, relevant actions and interactions organized
by specific task and entity/organization.  It is a simulation independent hierarchical description of actions
and interactions among the various entities associated with a particular mission area.

Thus, conceptual models of the mission space provide simulation developers with a common baseline for
constructing consistent and authoritative M&S representations.  The primary purpose of CMMS is to
facilitate interoperability and reuse of simulation components, particularly among DoD simulation
developments, by sharing common, authoritative information between DoD simulations.  CMMS will
provide a meta-model of fundamental knowledge about military operations. The CMMS System will
capture and store this knowledge, and make it easily accessible to simulation developers and users.

The mission space structure, tools and resources will provide both an overarching framework and access to
the necessary data and detail to permit development of consistent, interoperable, and authoritative
representations of the environment, systems, and human behavior in DoD simulation systems.

For more detailed information about CMMS, please access documentation available at
http://www.dmso.mil/projects/cmms.

1.3 Data Standardization
The data standardization program seeks to facilitate reuse, interoperability, and data sharing among models,
simulations, and C4I systems by establishing policies, procedures, and methodologies for data requirements,
standards, sources, security, and verification, validation, and certification.

The primary products of the data standardization program are: (1) Common Semantics and Syntax (CSS),
which define common lexicons, dictionaries, taxonomies, and tools for data elements; and (2) Data
Interchange Formats (DIF), the physical structures (BNF, SQL) used by programmers to actually
interchange data.

Other supporting data standardization products are: (1) Authoritative Data Sources (ADS), the primary
means for identifying data for reuse; (2) Data Quality (DQ) practices, a body of VV&A/C guidelines; and (3)
Data Security (DS) practices, the policies pertaining to data protection and release.

For more detailed information about data standardization, please access documentation available at
http://www.dmso.mil/projects/ds.



RTI 1.0 Programmer’s Guide

8

2. RTI 1.0 System Architecture
RTI 1.0 is a distributed system comprised of two global processes, the RTI Executive (rtiexec) and the
Federation Executive (fedex), and a library that is linked into each federate.  The rtiexec is a well-known
process that manages the creation and destruction of federation executions.  The fedex is a global process per
federation execution that manages the joining and resigning of federates in an execution.  The linkable
library provides the federate developer with the interface and implementation of a majority of the HLA 1.1
services.  The HLA 1.1 services are performed via communication between the rtiexec, the fedex, and the
federates utilizing socket-based reliable and best effort inter-process communication (IPC).  See Figure 2-1:
RTI 1.0 System Architecture.

rtiexec fedex federate federate

Federate Software

RTI Software

Inter-Process Communication

Figure 2-1:  RTI 1.0 System Architecture

2.1 Run Time Infrastructure (RTI) Executive
The RTI Executive (rtiexec) is the well-known global process that each federate will communicate with
during its initialization of the RTI components.  The RTI Executive’s primary purpose is to manage the
creation and destruction of federation executions.  The management of federation executions includes
ensuring that each federation execution has a unique name, providing a joining federate with the handle
(hostname and port) to an existing federation execution, and providing a unique multicast group for each
federation execution to communicate best-effort data.

The rtiexec executable has a console interface that provides access to commands that can be used to help
manage the current list of federation executions.  The set of commands currently available is described in
Table 2-1: RTI Executive Console Commands.

Table 2-1: RTI Executive Console Commands

Command
Usage

Description

help Lists the available commands and their usage.
List Lists the set of federation executions that are currently registered with the

rtiexec .
ref <fedName> Returns the host and port for the specified federation execution.
remove <fedName> Removes a federation execution from the rtiexec.
quit Exits the rtiexec process.



RTI 1.0 Programmer’s Guide

9

Note:  The location of the rtiexec (host and port) is specified in the RTI.rid file.  Federates will not be able
to communicate with the rtiexec process if the RTI_EXEC_HOST and RTI_EXEC_PORT values are
incorrectly specified in the RTI.rid file.  For more details on the RTI.rid file, see Section 2.4.1, Run-time
Initialization Data (RID).

2.2 Federation Executive
The Federation Executive (fedex) is a global process per federation execution that manages the joining and
resigning of federates and performs distribution of all reliable UpdateAttributeValues, SendInteractions, and
all RTI internal control messages.  The fedex process is created (fork/execvp’d) by the first federate to
successfully invoke the Create Federation service for a given Federation Execution name.  During
initialization, the fedex process communicates with the rtiexec to register itself and to request a multicast
address for its federations’ best-effort communications.  When a federate invokes the Join Federation
Execution service, the fedex provides the federate with an enumerated handle and a multicast address to use
for broadcasting best-effort communication.  (Note: Only Update Attribute Value and Send Interaction
services can be communicated using best-effort transport.)  For reliable Update Attribute Value and Send
Interaction services, the fedex acts as an information exploder by receiving the reliable communication from
the sending federate (point-to-point using TCP) and then iterating through all other federates sending the
reliable communication, as indicated in Figure 2-2:  Reliable Update Attribute Value & Send Interaction
Communication.

Sending 
Federate

Receiving 
Federate

Receiving 
Federate

fedex

Figure 2-2:  Reliable Update Attribute Value & Send Interaction Communication

The fedex executable has a console interface that provides access to commands that can be used to help
manage the current list of federates.  The set of commands currently available is described in Table 2-2:
Federation Executive Console Commands.

Table 2-2: Federation Executive Console Commands

Command
Usage

Description

help Lists the available commands and their usage.
list Lists the set of federates that are currently joined to the federation execution.
ref <handle> Prints the hostname and port for the federate handle.



RTI 1.0 Programmer’s Guide

10

Table 2-2: Federation Executive Console Commands

Command
Usage

Description

remove <handle> Removes a federate from the federation execution.
trace Toggles trace mode on or off.
quit Exits the fedex process.

2.3 C++ Library (libRTI)
The C++ library (libRTI) implements the interface to the HLA 1.1 services.  Each federate in a federation
execution will utilize the C++ library to invoke HLA services.  These services are performed via
communication with the rtiexec, the fedex, and other federates in the federation execution.  This section will
provide a high level description of the C++ Application Programming Interface (API), memory
management conventions, and issues regarding data marshaling.

2.3.1 C++ Application Programming Interface (API)
The two classes that provide the interface between the federate and the RTI are the RTIambassador and
FederateAmbassador.  The RTIambassador class defines and implements the interface that is used by the
federate to communicate with the RTI.  The FederateAmbassador class defines the interface the RTI will use
to communicate with the federate. The FederateAmbassador class is an abstract base class that the federate
developer must implement (sub-class and define the methods) in order to successfully compile a federate
with the RTI. Figure 2-3:  RTI 1.0 C++ Interface, depicts the two classes that provide the interface between
the federate and the RTI.

FederateAmbassador RTIambassador

Internal RTI Objects

Federate Sub-Class of
FederateAmbassador

Internal
Federate Objects

Federate Objects

RTI Interfaces &  Objects

Figure 2-3:  RTI 1.0 C++ Interface

2.3.2 Memory Allocation Conventions
The general convention for memory allocation/deallocation is that the application developer must deallocate
any memory that the developer allocated on the heap (using the new function).  In addition, some RTI 1.0
class methods allocate memory on the heap and pass it to the application. Each of the methods in the RTI
1.0 include files have been annotated with the conventions described in Table 2-3: Memory Allocation
Conventions, which follows.

Table 2-3: Memory Allocation Conventions



RTI 1.0 Programmer’s Guide

11

Code Convention Description Allocator Deallocator
C1 In parameter by value. None None
C2 Out parameter by reference. None None
C3 Function return by value. None None
C4 In parameter by const reference.  Caller provides memory.

Caller may free memory or overwrite it upon completion
of the call.  Callee must copy during the call anything it
wishes to save beyond completion of the call.  Parameter
type must define const accessor methods.

Caller Caller

C5 Out parameter by reference.  Caller provides reference to
object. Callee constructs an instance on the heap (new) and
returns. The caller destroys the instance (delete) at its
leisure.

Callee Caller

C6 Function return by reference.  Callee constructs an instance
on the heap (new) and returns a reference.  The caller
destroys the instance (delete) at its leisure.

Callee Caller

2.3.3 Data Marshaling
Communicating federation data across heterogeneous platforms (e.g., Sun, SGI, HP, IBM, Windows NT)
requires a policy for the conversion of data between platforms.  A commonly used policy is to convert data
between the platform specific data representations and a platform independent representation (usually called
network representation).  This conversion requires knowledge about the data types to be converted.  Since
the RTI 1.0 does not know the types of a federate’s attributes and parameters, it can not perform this
conversion.

2.3.4 Internal Software Design
RTI 1.0 provides a procedural interface to the HLA 1.1 services through the RTIambassador and
FederateAmbassador classes.  Each of the services is executed by the federate within the federate’s thread of
control.  Figure 2-4:  RTI 1.0 Internal Architecture depicts the high level objects within the RTI 1.0
system and annotates the objects with a description of their functionality.



RTI 1.0 Programmer’s Guide

12

Fed Exec

Transport
Mgr

RTI Exec

FedAmb

tick

RTI Amb

tick

Tick Mgr

Log Mgr

MOM Mgr Config Mgr

Fed

tick
Object Mgr

tick
Time Mgr

RTI Exec
Proxy

tick
Fed Exec

Proxy

builds the message, XDR
handles different transports

publication/subscription enforcement
ownership management and enforcement
class promotion and attribute reduction
object discovery and removal

main event loop

publication/subscription enforcement
class promotion and parameter reduction

tick
Interaction

Mgr

Fed Exec
Fed Exec

one per fed exec
TCP/IP exploder
single multicast

queues arriving messages if needed
advances  local time
manages event retraction handles

interface to ACE

Management
Object 
Model

entry point
for all RTI
services

entry point
for all federate
services

Figure 2-4:  RTI 1.0 Internal Architecture

2.3.4 .1  Flow of  Control
An application provides the flow of control to the RTI by using the RTIambassador::tick() method.  During
the tick() method, the RTI performs many operations that are transparent to the application as well as the
operations which invoke FederateAmbassador methods (similar to application callbacks).  An example
federate event loop is shown in Figure 2-5:  Federate Event Loop Example.

while ( RTI::RTI_TRUE ) // My event loop lasts forever
{
   try
   {
      timeAdvGrant = RTI::RTI_FALSE;
      rtiAmb.timeAdvanceRequest(currentTime + timeStep);
   }
   // Should catch exceptions here

   while (!timeAdvGrant)
   {
      //------------------------------------------------------
      // Tick will turn control over to the RTI so that it can
      // process an event.  This may cause an invocation of one
      // of the federateAmbassadorServices methods.
      //
      // Be sure not to invoke the RTIambassadorServices from the
      // federateAmbassadorServices; otherwise, a ConcurrentAccess
      // exception will be thrown.
      //------------------------------------------------------
      int eventsToProcess = 1;



RTI 1.0 Programmer’s Guide

13

      // tick in a loop to get all events currently queued up
      while ( eventsToProcess )
      {
         eventsToProcess = rtiAmb.tick();
      }
   }

   //------------------------------------------------------
   // If a time advance grant occurred and we have been given
   // permission to advance in time then calculate my next state.
   //------------------------------------------------------
   if (grantTime > currentTime)
   {
      //------------------------------------------------------
      // Do some simulation stuff here and set my new time...
      //------------------------------------------------------
      currentTime = grantTime;
   }
}

Figure 2-5:  Federate Event Loop Example

The RTI is a distributed system with components located throughout the federation.  Each RTI component
(linked into each federate) must perform synchronization operations with the other RTI components to
allow a federation to progress in time, handle ownership management, join federations, and update
Management Object Model (MOM) state.  It is important to invoke the tick method regularly (not just
when you want data) since many internal systems are invoked by RTIambassador::tick().  See Figure 2-4:
RTI 1.0 Internal Architecture for a depiction of internal RTI components that are provided flow of control
during a RTIambassador::tick().

2.3.4.2 Thread Model
The RTI 1.0 is intended to operate within a single thread (the main thread) of an application.  However, the
RTI library has been compiled with the -mt flag and has been tested in applications that instantiate the RTI
objects in a thread other than the main process thread.  The RTI is not reentrant and enforces this by
throwing the exception RTI::ConcurrentAccessAttempted - this occurs when an RTIambassador method is
invoked while another RTIambassador method has not yet completed (this includes the tick() method).
However, the following RTI support services are reentrant  and can be invoked within the scope of a
FederateAmbassador method: getObjectClassName, getObjectClassHandle, getAttributeName,
getAttributeHandle, getInteractionClassName, getInteractionClassHandle, getParameterName, and
getParameterHandle.

2.4 Configuration and Input Files
The RTI 1.0 requires that a federation execution data (FED) file and a run-time initialization data (RID) file
exist to run a federation execution.  The FED file contains the data organization agreed upon in the FOM
along with default transport and ordering information for object attributes and interaction class data.  The
RID file contains configuration parameters that the 1.0 uses to fine-tune and modify its system
configuration at run-time.  1.0 expects to find the RID and FED files in the directory specified by the
RTI_CONFIG environment variable.  The files are named RTI.rid and <Federation Name>.fed, respectively.

2.4.1 Run-time Initialization Data (RID)
The Runtime Initialization Data (RID) is RTI implementation specific information used to fine-tune RTI
behavior and system configuration at run-time.  In 1.0, this file is parsed by the fedex and each federate
(libRTI).  An example RTI.rid file is shown in Figure 2-6: Example RTI.rid file.



RTI 1.0 Programmer’s Guide

14

###############################################################################
# FILE   : RTI.rid
# PURPOSE: This file is the main configuration file for the RTI.
###############################################################################

###############################################################################
# VARIABLE: ATTRIBUTE_RELEASE_TRIES
# UNITS   : Positive integer
# PURPOSE : To specify the number of times the RTI Ambassador should tick the
#           Federation Execution in an attempt to release the attributes of a
#           resigning federate.
###############################################################################
ATTRIBUTE_RELEASE_TRIES 2

##############################################################################
# VARIABLE: AUTO_TICK_PERIOD
# UNITS   : Positive double
# PURPOSE : To specify the automatic tick period during join and resign.
###############################################################################
AUTO_TICK_PERIOD 1.0

###############################################################################
# VARIABLE: BEST_EFFORT_PORT
# UNITS   : Positive integer
# PURPOSE : To specify the port number on which best-effort multicast
#           addressing will be attempted.
###############################################################################
BEST_EFFORT_PORT 18134

###############################################################################
# VARIABLE: MAX_HANDLE_VALUE_PAIRS
# UNITS   : Positive integer
# PURPOSE : To specify the maximum number of attribute handle value pairs
#           allowed in an attribute handle value pair set.
###############################################################################
MAX_HANDLE_VALUE_PAIRS 5000

###############################################################################
# VARIABLE: MAX_OBJECTS_PER_FEDERATE
# UNITS   : Positive integer
# PURPOSE : To specify the maximum number of objects a federate may know about.
###############################################################################
MAX_OBJECTS_PER_FEDERATE 100000

###############################################################################
# VARIABLE: MOM_TIME_RESOLUTION
# UNITS   : Positive integer
# PURPOSE : To specify the tick interval for checking the wall clock to see if
#           it is time to send a report.
###############################################################################
MOM_TIME_RESOLUTION     10

###############################################################################
# VARIABLE: DELETED_OBJECT_DURATION
# UNITS   : Positive integer
# PURPOSE : To specify the number of tick to wait before attempting to



RTI 1.0 Programmer’s Guide

15

#           remove DELETED objects from the object database.
###############################################################################
DELETED_OBJECT_DURATION 10

###############################################################################
# VARIABLE: RTI_EXEC_HOST
# UNITS   : Character string
# PURPOSE : To specify the hostname of the machine on which the RTI Executive
#     process is executing.
###############################################################################
RTI_EXEC_HOST localhost

###############################################################################
# VARIABLE: RTI_EXEC_PORT
# UNITS   : Positive integer
# PURPOSE : To specify the port number on which the RTI Executive process is
#     listening for connections.
###############################################################################
RTI_EXEC_PORT 18134

###############################################################################
# VARIABLE: TIME_TRACE
# UNITS   : Boolean
# PURPOSE : To specify whether or not to use tracing in the Time Manager.
###############################################################################
TIME_TRACE OFF

###############################################################################
# VARIABLE: FEDEX_TIMEOUT
# UNITES  : Positive Integer
# Purpose : To specify how long the FedEx should wait for input before handing
#           out orphaned objects to federates
###############################################################################
FEDEX_TIMEOUT 120

 Figure 2-6: Example RTI.rid file

2.4.2 Federation Execution Data (FED)
The federation execution data (FED) describes the information in the FOM that the RTI needs to properly
handle the global federation name space.  The information contained in the FED describes the inheritance
structure of object and interaction classes, as well as the attributes and parameters at each level in the
respective class hierarchy.

When a federate joins a federation execution, components within the RTI library will read the
<FederationExecutionName>.fed file that is found in the directory specified by the RTI_CONFIG
environment variable.  This file must contain each of the object and interaction classes and attributes and
parameters that will be used in a federation execution.  The FED syntax is specified in a pseudo-lisp format
of nested lists of tokens. The FED file syntax is shown in Figure 2-7: Federation Execution Data (FED)
file syntax.

;; Comments are any text after a semicolon.
;; basic syntax example
;; possible <transportation> = FED_RELIABLE,
;;                             FED_BEST_EFFORT
;;
;; possible <ordering> = FED_RECEIVE,



RTI 1.0 Programmer’s Guide

16

;;                       FED_TIMESTAMP
;;

(fed
;; object, class, and attribute definitions follow

   (objects
      ( class <name>
         (attribute <name> <transportation> <ordering>)
         (attribute <name> <transportation> <ordering>)
;;   ... any other attributes must come before any subclasses for same level
         (class <name>
            (attribute <name> <transportation> <ordering>)
            (attribute <name> <transportation> <ordering>)
         )
      )
   )

;; interactions, class, and parameter definitions follow

   (interactions
      (class <name> <transportation> <ordering>
         (parameter <name>)
         (parameter <name>)
;;   ... any other parameters must come before any subclasses for the same level
         (class <name> <transportation> <ordering>
            (parameter <name>)
            (parameter <name>)
         )
      )
   )
) ; end of fed

Figure 2-7: Federation Execution Data (FED) file syntax

2.4.2.1 Management Object Model (MOM)

The Management Object Model (MOM) defines the set of object classes and interaction classes used for RTI
and federation specific management and monitoring.  A thorough explanation of the HLA MOM including
Object Model Template descriptions  is provided in “High Level Architecture Management Object Model”
located at the DMSO web-site.

RTI 1.0 implements the Manager::Federate object class which the RTI is responsible for publishing,
updating, and receiving reflected attribute values. This class provides the federation with information about
the federates identity, time settings, RTI version, and internal queue sizes. For a description of the attributes
implemented, see Table 2-3: Manager::Federate Attribute Definitions.

Table 2-3: Manager::Federate Attribute Definitions

Attribute Definition
FederateHost The string representation of the hostname the federate is executing on.
FederateHandle The string representation of an integer that is the handle assigned to the

federate by the fedex.
FederateState The string representation of the integer corresponding to the value of

the RTI::FederateStateType enumeration appropriate for the federate.



RTI 1.0 Programmer’s Guide

17

Table 2-3: Manager::Federate Attribute Definitions

Attribute Definition
FederateName The string representation of the name specified by the federate at join

time - it is for descriptive purposes only.
RTIversion The string representation of the software version of the RTI library.

The initial 1.0 release is version 1 . 0 . 1.
TimeManagerState The string representation of the integer corresponding to the value of

the RTI::TimeManagerStateType enumeration appropriate for the
federate.  This value indicates what type of time-advancement service (if
any) is currently in effect for the federate.

FederateLookahead The string representation of a double that is the value of the federate’s
lookahead.

FederateTime The string representation of a double that is the value of the federate’s
local time.

TimeConstrained The character representation of an integer that specifies whether the
federate is constrained or unconstrained, where 0 is False and 1 is True.

TimeRegulating The character representation of an integer that specifies whether the
federate is regulating or not regulating,  where 0 is False and 1 is True.

FIFOlength The string representation of an integer that specifies the number of
elements in the First In First Out (FIFO) queue.  The FIFO queue
contains messages sent with RECEIVE order.

TSOlength The string representation of an integer that specifies the number of
elements in the Time Stamp Ordered (TSO) queue.  The TSO queue
contains messages sent with RECEIVE order.

DequeueFIFOasync The string representation of the boolean value indicating whether or not
the federate is asynchronously processing receive-order messages.  (See
the RTIambassador::dequeueFIFOasynchronously service for further
description.)

TotalObjectCount The string representation of an integer that specifies the total number of
objects known to the federate (either discovered or registered and is
reduced by delete and remove object services).

HoldingTokensObjectCount The string representation of an integer that specifies the number of
objects in a federates database but the federate is not aware of.  This
occurs when someone resigns and releases ownership of tokens but no
one else assumed ownership.  This is specific to the 1.0
implementation and may not be generally necessary.

DeletedObjectCount The string representation of an integer that specifies the number of
objects the federate knows about that have been deleted. This is specific
to the 1.0 implementation and may not be generally necessary. It is
used to ensure that deleted objects are not rediscovered due to traffic
latencies.  An object will remain in the database for the number of ticks
specified in the RID file.  This value may need to be adjusted due to
federation specific run-time properties.

NumAttributes The string representation of an integer that acts as an indicator of the
number of attribute values stored  by the federate.

NumParameters The string representation of an integer that acts as an indicator of the
number of parameter values stored  by the federate.



RTI 1.0 Programmer’s Guide

18

The Manager::Federation class provides information about the federation state and is published by the RTI
(one per federation.) For a description of the attributes implemented, see Table 2-4: Manager::Federation
Attribute Definitions.

Table 2-4: Manager::Federation Attribute Definitions

Parameter Definition
FederationName The string name of the federation.
FederationState The string representation of the integral value of the

RTI::FederationStateType enumeration.  This value indicates the
pause/resume state of the federation as a whole

FederatesInFederation The string representation of the integral number of federates joined in
the federation execution.

SaveIsScheduled The string representation of the boolean value indicating whether or not
a federation save is currently scheduled.

ScheduledSaveTime The string representation of the double-precision floating-point number
representing the logical time of the scheduled federation save (or
positive infinity if no save is scheduled.)

RTIversion The string representation of the version number of the federation
executive (in the initial release of RTI 1.0, this is 1 . 0 . 1.)

The Manager::Federate::Alert interaction allows the RTI to inform the federation when an exceptional
condition occurs in a federate.  For a description of the parameters of this interaction, see Table 2-5:
Manager::Federate::Alert Parameter Definitions.

Table 2-5: Manager::Federate::Alert Parameter Definitions

Parameter Definition
FromFederate The string representation of the initiating federate’s handle.
AlertSeverity The string representation of the integral value of the LogType

enumeration.  Possible values are RTI_EXCEPTION=0,
RTI_INTERNAL_ERROR, RTI_FEDERATE_ERROR,
RTI_WARNING, RTI_DIAGNOSTIC.

AlertText The string representation of the reason of the alert.
AlertID The string representation of the serial number for an exception.

The Manager::Federate::ServiceLog interaction allows detailed tracing of RTIambassador and
FederateAmbassador method invocations.  The generation of such can be toggled using the
Manager::Action::Control interaction. For a description of the attributes implemented, see Table 2-6:
Manager::Federate::ServiceLog Parameter Definitions.

Table 2-6: Manager::Federate::ServiceLog Parameter Definitions

Parameter Definition
FromFederate The string representation of the initiating federate's handle.
ServiceName The string method name of the service call generating the interaction.
ServiceInitiator The string representing the initiator of the service call (FED for

RTIambassador methods or RTI for FederateAmbassador methods.)



RTI 1.0 Programmer’s Guide

19

The Manager::Federate::ServiceLog::ServiceLogArguments interaction allows detailed tracing of
RTIambassador and FederateAmbassador method invocations including the arguments provided in each call.
The generation of such can be toggled using the Manager::Action::Control interaction. For a description of
the attributes implemented, see Table 2-7: Manager::Federate::ServiceLog::ServiceLogArguments Parameter
Definitions.

Table 2-7: Manager::Federate::ServiceLog::ServiceLogArguments Parameter
Definitions

Parameter Definition
FromFederate The string representation of the initiating federate's handle.
ServiceName The string method name of the service call generating the interaction.
ServiceInitiator The string representing the initiator of the service call (FED for

RTIambassador methods or RTI for FederateAmbassador methods.)
Handle1 Meaning is dependent on service invoked. Parameter is represented as a

string.
Handle2 Meaning is dependent on service invoked. Parameter is represented as a

string.
HandleSet Meaning is dependent on service invoked. Parameter is represented as a

string.
ObjectIDorCount Meaning is dependent on service invoked. Parameter is represented as a

string.
TagOrLabelOrName Meaning is dependent on service invoked. Parameter is represented as a

string.
Time The string representation of the time provided to the service invoked.
Enumeration Meaning is dependent on service invoked. Parameter is represented as a

string.
Boolean Meaning is dependent on service invoked. Parameter is represented as a

string.

The Manager::Federate::ObjectInformation interaction is sent by the RTI in response to a
Manager::Federate::Action::RequestObjectInformation interaction sent by a federate. It reports information
about the internal state the RTI maintains for the object.  For a description of the parameters implemented,
see Table 2-8: Manager::Federate::ObjectInformation Parameter Definitions.

Table 2-8: Manager::Federate::ObjectInformation Parameter Definitions

Parameter Definition
FromFederate The string representation of the initiating federate's handle.
ObjectID The string representation of the ObjectID that this interaction id

reporting information on.
LockedAttributes The string representation of the attributes that are owned by a federate.
RegisteredClass The string representation of the class that was registered by the

registering federate.
RepresentedClass The string representation of the class that was discovered by the

fromFederate.

The Manager::Federate::PublishingClass interaction is sent by the RTI in response to a
Manager::Federate::Action::RequestPublicationTree interaction sent by a federate.  It reports the current



RTI 1.0 Programmer’s Guide

20

publication state for a federate.  For a description of the parameters implemented, see Table 2-9:
Manager::Federate::PublishingClass Parameter Definitions.

Table 2-9: Manager::Federate::PublishingClass Parameter Definitions

Parameter Definition
FromFederate The string representation of the initiating federate's handle.
ObjectClass The string representation of the object class and attributes published for

one object class.  The format of the string is “ClassHandle”.
InteractionClass The string representation of the interaction class handle.  The format of

the string is
“ClassHandle:attributeHandle,attributeHandle,...,attributeHandle”.

The Manager::Federate::SubscribingClass interaction is sent by the RTI in response to a
Manager::Federate::Action::RequestSubscriptionTree interaction sent by a federate.  It reports the current
subscription state for a federate.  For a description of the parameters implemented, see Table 2-10:
Manager::Federate::SubscribingClass Parameter Definitions.

Table 2-10: Manager::Federate::SubscribingClass Parameter Definitions

Parameter Definition
FromFederate The string representation of the initiating federate's handle.
ObjectClass The string representation of the object class and attributes published for

one object class.  The format of the string is “ClassHandle”.
InteractionClass The string representation of the interaction class handle.  The format of

the string is
“ClassHandle:attributeHandle,attributeHandle,...,attributeHandle”.

The Manager::Federate::Action interaction is used to perform an action on a remote federate or a federate’s
local RTI component. For a description of the parameters implemented, see Table 2-11:
Manager::Federate:Action Parameter Definitions.

Table 2-11: Manager::Federate:Action Parameter Definitions

Parameter Definition
FromFederate The string representation of the initiating federate's handle.
ToFederate The string representation of the receiving federate's handle.

The Manager::Federate::Action::RequestPublicationTree interaction is used to request that the RTI provide
the federate with the current publications of a federate. For a description of the parameters implemented, see
Table 2-12: Manager::Federate::Action::RequestPublicationTree Parameter Definitions.

Table 2-12: Manager::Federate::Action::RequestPublicationTree Parameter Definitions

Parameter Definition
FromFederate The string representation of the initiating federate's handle.
ToFederate The string representation of the receiving federate's handle.



RTI 1.0 Programmer’s Guide

21

The Manager::Federate::Action::RequestSubscriptionTree interaction is used to request that the RTI provide
the federate with the current subscriptions of a federate. For a description of the parameters implemented, see
Table 2-13: Manager::Federate::Action::RequestSubscriptionTree Parameter Definitions.

Table 2-13: Manager::Federate::Action::RequestSubscriptionTree Parameter
Definitions

Parameter Definition
FromFederate The string representation of the initiating federate's handle.
ToFederate The string representation of the receiving federate's handle.

The Manager::Federate::SetTiming interaction allows modification of a federate’s periodic rate that the RTI
will automatically update the Manager::Federate attributes related to federate identity, time, and objects
respectively. The default value for the periodic rate is positive infinity - this means only one update occurs
at startup by default. This value can also be specified by the MOM_TIME_RESOLUTION value in the
RID file. For a description of the parameters implemented in this interaction, see Table 2-14:
Manager::Federate:SetTiming Parameter Definitions.

Table 2-14: Manager::Federate:SetTiming Parameter Definitions

Parameter Definition
FromFederate The string representation of the initiating federate's handle.
ToFederate The string representation of the federate’s handle that the interaction is

intended to modify.
FedReportPeriod The string representation of the integer that is the number of seconds

between MOM updates of federate attributes (Hostname, federate name,
fedex name, federate handle,  and RTI version).

TimeReportPeriod The string representation of the integer that is the number of seconds
between MOM updates of federate time attributes(lookahead, federate
time, constrained, regulating, TSO length, and FIFOlength)

ObjectReportPeriod The string representation of the integer that is the number of seconds
between MOM updates of federate object attributes (TotalObjectCount,
HoldingTokensObjectCount, DeletedObjectCount, NumAttributes,
NumParameters, NumBytesInAttributes, and NumBytesInParamaters)

The Manager::Federate::Action::RequestObjectInformation interaction causes the RTI to send a
Manager::Federate::ObjectInformation interaction informing a federate of the state it is maintianing for a
specific object. For a description of the parameters implemented in this interaction, see Table 2-15:
Manager::Federate::Action::RequestObjectInformation Parameter Definitions.

Table 2-15: Manager::Federate::Action::RequestObjectInformation Parameter
Definitions

Parameter Definition
FromFederate The string representation of the initiating federate's handle.
ToFederate The string representation of the federate’s handle that the interaction is

intended to modify.
ObjectID The string representation of the ObjectID that information is being

requested for.



RTI 1.0 Programmer’s Guide

22

The Manager::Federate::Action::ModifyAttributeState interaction allows federates to modify the ownership
token status of an attribute-instance. This should not be attempted by someone unfamiliar with RTI
internals.  For a description of the parameters implemented in this interaction, see Table 2-16:
Manager::Federate::Action::ModifyAttributeState Parameter Definitions.

Table 2-16: Manager::Federate::Action::ModifyAttributeState Parameter Definitions

Parameter Definition
FromFederate The string representation of the initiating federate's handle.
ToFederate The string representation of the federate’s handle that the interaction is

intended to modify.
ObjectID The string representation of the object whose attribute token status is

to be modified.
AttributeID The string representation of the attribute whose instance’s token status

is to be modified.
TokenState The string representation of the integral value of the RTI::TokenState

enumeration to set the attribute-instance to.

The Manager::Federate::Action::RemoteServiceInvocation::DoResignFederationExecution interaction
executes the equivalent of the RTIambassador::resignFederationExecution service on the target federate. For
a description of the parameters implemented in this interaction, see Table 2-17:
Manager::Federate::Action::RemoteServiceInvocation::DoResignFederationExecution Parameter
Definitions.

Table 2-17:
Manager::Federate::Action::RemoteServiceInvocation::DoResignFederationExecution

Parameter Definitions

Parameter Definition
FromFederate The string representation of the initiating federate's handle.
ToFederate The string representation of the federate’s handle that the interaction is

intended to modify.
ResignAction The string representation of the integral value of the

RTI::ResignAction enumeration to use as an argument to the
resignFederationExecution. service.

The Manager::Federate::Action::RemoteServiceInvocation::DoDeleteObject interaction executes the
equivalent of the RTIambassador::deleteObject on the target federate. For a description of the parameters
implemented in this interaction, see Table 2-18:
Manager::Federate::Action::RemoteServiceInvocation::DoDeleteObject Parameter Definitions.

Table 2-18: Manager::Federate::Action::RemoteServiceInvocation::DoDeleteObject
Parameter Definitions

Parameter Definition
FromFederate The string representation of the initiating federate's handle.
ToFederate The string representation of the federate’s handle that the interaction is

intended to modify.
ObjectID The string representation of the object ID to use as an argument to the



RTI 1.0 Programmer’s Guide

23

Parameter Definition
deleteObject service.

Time The string representation of the federatin time to use as an argument to
the deleteObject service.

Tag The string to use as an argument to the deleteObject service.

The Manager::Federate::Action::RemoteServiceInvocation::DoSetLookahead interaction executes the
equivalent of the RTIambassador::setLookahead method on the target federate. For a description of the
parameters implemented in this interaction, see Table 2-19:
Manager::Federate::Action::RemoteServiceInvocation::DoSetLookahead Parameter Definitions.

Table 2-19: Manager::Federate::Action::RemoteServiceInvocation::DoSetLookahead
Parameter Definitions

Parameter Definition
FromFederate The string representation of the initiating federate's handle.
ToFederate The string representation of the federate’s handle that the interaction is

intended to modify.
Lookahead The string representation of a double that is the value the federate’s

lookahead will be set to. The lookahead value is specified as a double.

The Manager::Federate::Action::RemoteServiceInvocation::DoSetTimeConstrained interaction executes the
equivalent of the RTIambassador::setTimeConstrained method on the target federate. For a description of the
parameters implemented in this interaction, see Table 2-20:
Manager::Federate::Action::RemoteServiceInvocation::DoSetTimeConstrained Parameter Definitions.

Table 2-20:
Manager::Federate::Action::RemoteServiceInvocation::DoSetTimeConstrained

Parameter Definitions

Parameter Definition
FromFederate The string representation of the initiating federate's handle.
ToFederate The string representation of the federate’s handle that the interaction is

intended to modify.
State The string representation of an integer (True=0, False=1) that toggles

whether the federate is constrained or not constrained.  The specified
value gets passed to an invocation of setTimeConstrained().

The Manager::Federate::Action::RemoteServiceInvocation::DoTurnRegulationOn interaction executes the
equivalent of the RTIambassador::turnRegulationOn method on the target federate. For a description of the
parameters implemented in this interaction, see Table 2-21:
Manager::Federate::Action::RemoteServiceInvocation::DoTurnRegulationOn Parameter Definitions.

Table 2-21:
Manager::Federate::Action::RemoteServiceInvocation::DoTurnRegulationOn Parameter

Definitions

Parameter Definition
FromFederate The string representation of the initiating federate's handle.



RTI 1.0 Programmer’s Guide

24

Parameter Definition
ToFederate The string representation of the federate’s handle that the interaction is

intended to modify.

The Manager::Federate::Action::RemoteServiceInvocation::DoTurnRegulationOff interaction executes the
equivalent of the RTIambassador::turnRegulationOff method on the target federate. For a description of the
parameters implemented in this interaction, see Table 2-22:
Manager::Federate::Action::RemoteServiceInvocation::DoTurnRegulationOff Parameter Definitions.

Table 2-22:
Manager::Federate::Action::RemoteServiceInvocation::DoTurnRegulationOff Parameter

Definitions

Parameter Definition
FromFederate The string representation of the initiating federate's handle.
ToFederate The string representation of the federate’s handle that the interaction is

intended to modify.



RTI 1.0 Programmer’s Guide

25

3. HLA Service to C++ Mapping

This section describes the mapping from the HLA 1.0 Interface Specification to C++.  The focus of this
section is to describe the services that are implemented, the methods that should be used together and the
memory allocation rules for key methods.  Note: Only the services that are implemented in F.0 are
described in this section.

3.1 Federation Management

Table 3-23: Federation Management Services

Section Service Title Service
Implemented

2.1 Create Federation Execution Yes
2.2 Destroy Federation Execution Yes
2.3 Join Federation Execution Yes
2.4 Resign Federation Execution Yes
2.5 Request Pause Yes
2.6 Initiate Pause † Yes
2.7 Pause Achieved Yes
2.8 Request Resume Yes
2.9 Initiate Resume † Yes
2.10 Resume Achieved Yes
2.11 Request Federation Save Yes
2.12 Initiate Federate Save † Yes
2.13 Federate Save Begun Yes
2.14 Federate Save Achieved Yes
2.15 Request Restore Yes
2.16 Initiate Restore † Yes
2.17 Restore Achieved Yes



RTI 1.0 Programmer’s Guide

26

3.1.1 Create Federation Execution
NAME

createFederationExecution - create a named federation execution and register it with
the RTI executive

HLA INTERFACE SPECIFICATION SERVICE
2 . 1  - Federation Management (federate initiated)

SYNOPSIS
#include <RTI.hh>

void
RTIambassador::createFederationExecution (
  const RTI::FederationExecutionName executionName
)
 throw (
   RTI::FederationExecutionAlreadyExists,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

ARGUMENTS
   executionName   

string specifying the name of the federation execution to create. The caller is
responsible for freeing the memory used by this string and may do so at any
time after the completion of the call.

DESCRIPTION
This method first queries the RTI executive to determine if a federation executive
already exists for the given federation.  If not, it attempts to fork a subprocess to
run the federation execution executable located at $RTI_HOME/bin/fedex.sh.
Upon successful initialization, the federation executive will inform the RTI
executive of its existence; only at this point may federates begin joining the
execution.

RETURN VALUES
A non-exceptional exit from this method indicates that the RTI executive has
approved the creation of the named federation execution and that the federation
execution subprocess has been forked.

It is important to note that a non-exceptional return does not guarantee that the
federation execution has been successfully created; errors that occur in the
initialization of the federation execution subprocess (e.g. bad path to the federation
execution executable) are not detected by the
RTIambassador::createFederationExecution method. Output from the federation
executive is logged to a file Xterm.##### (where ##### is a PID) in the current
directory; this log should be consulted when attempting to diagnose problems with
federation executive initialization.

Even when the federation executive initialization is successful, there is necessarily a



RTI 1.0 Programmer’s Guide

27

(non-negligible) period of time between the return of the
RTIambassador::createFederationExecution call and the time that the federation
execution is initialized, registered, and ready to accept joining federates.  As a
result, calls to RTIambassador::joinFederationExecution immediately following
calls to RTIambassador::createFederationExecution will fail; applications should
have a time delay between these two calls and/or be prepared to call
RTIambassador::joinFederationExecution multiple times to ensure that the
federation executive has had time to be initialized.

WINDOWS NT NOTES
On Windows NT, the path of the executable that is forked to start the federation
executive is %RTI_HOME%.exe. Currently, output from the federation executive
is not logged on Windows NT.

EXCEPTIONS
RTI::FederationExecutionAlreadyExists - A federation executive for the given
federation has already been registered with the RTI executive.  Federation
executives will unregister themselves with the RTI executive upon termination;
however, sometimes an abnormal termination of a federation executive (e.g. a "kill
-9") will result in a defunct federation executive still being registered.  If this
occurs, it is necessary to unregister the federation executive manually via the RTI
executive console interface.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTIambassador::joinFederationExecution,
RTIambassador::destroyFederationExecution



RTI 1.0 Programmer’s Guide

28

3.1.2 Destroy Federation Execution
NAME

destroyFederationExecution - unregister a named federation execution with the RTI
executive and shut down the federation executive

HLA INTERFACE SPECIFICATION SERVICE
2 . 2  - Federation Management (federate initiated)

SYNOPSIS
#include <RTI.hh>

void
RTIambassador::destroyFederationExecution (
  const RTI::FederationExecutionName federationName
)
 throw (
   RTI::FederatesCurrentlyJoined,
   RTI::FederationExecutionDoesNotExist,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

ARGUMENTS
   federationName   

string specifying the name of the federation execution to destroy.  The caller
is responsible for freeing the memory used by this string and may do so at
any time after the completion of the call.

DESCRIPTION
This method queries the RTI executive for the location of the federation executive
for the given federation.  If one exists, it is asked to destroy itself.  If the
prerequisites for federation executive destruction are met (i.e. there are no federates
joined to the federation execution), the federation executive notifies the RTI
executive of its intention to shut down and exits.

There are no restrictions on whom may destroy the federation execution; a federate
need not be the creator of the federation executive, or even have been a member of
the federation execution.

RETURN VALUES
A non-exceptional return indicates that the federation execution has been
successfully destroyed.

EXCEPTIONS
RTI::FederatesCurrentlyJoined - There are still federates joined in the federation
execution.  All federates must have resigned (or been manually removed via the
federation executive console) from the federation execution before the it can be
destroyed.  Note that the federation executive automatically removes non-existent
federates from the federation (even if they fail to resign properly), so it shouldn't be
necessary to manually remove federates under normal circumstances.



RTI 1.0 Programmer’s Guide

29

RTI::FederationExecutionDoesNotExist - The RTI does not have a federation
executive registered for the given federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the
RTIambassador; most likely caused by a call to an RTI ambassador method from
inside a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTIambassador::createFederationExecution



RTI 1.0 Programmer’s Guide

30

3.1.3 Join Federation Execution
NAME

joinFederationExecution - request permission to participate in a named federation
execution from the federation executive and associate the RTI ambassador with the
federation execution

HLA INTERFACE SPECIFICATION SERVICE
2 . 3  - Federation Management (federate initiated)

SYNOPSIS
#include <RTI.hh>

RTI::FederateHandle
joinFederationExecution (
  const RTI::FederateName yourName
  const RTI::FederationExecutionName executionName
  RTI::FederateAmbassadorPtr federateAmbassadorReference
)
 throw (
   RTI::FederateAlreadyExecutionMember,
   RTI::FederationExecutionDoesNotExist,
   RTI::CouldNotOpenFED,
   RTI::ErrorReadingFED,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

ARGUMENTS
    yourName   

string indicating the symbolic name by which the federate will be known to
the federation.

   executionName   
string indicating the name of the federation execution to join.

The caller is responsible for freeing storage space used by these strings and may do
so at any time after the completion of the call.

   federateAmbassadorRef   
pointer to an instance of an application-defined subclass of
RTI::FederateAmbassador on which RTI-initiated callbacks will be invoked.
The caller is responsible for freeing the storage associated with this object,
but it should not do so until the object is no longer needed by the RTI
ambassador (i.e. RTIambassador::resignFederationExecution has been
called.)

DESCRIPTION
This method queries the RTI executive for the location of the federation executive
responsible for the given named federation execution.  It then issues a request to the
federation executive to join the federation execution.  Lastly, RTI ambassador



RTI 1.0 Programmer’s Guide

31

internals are initialized using the Federation Execution Data (FED) file whose path
is given by $RTI_CONFIG/[federation name].fed.

Upon successful completion, the RTI ambassador is associated with a particular
federation execution and will notify the federate of changes in federation state
through the invocation of federateAmbassadorRef callbacks.  Keep in mind that no
data will be presented to the federate ambassador until the federate has declared
interest via the appropriate declaration management services.

Also upon successful completion, the Management Object Model (MOM) Manager
has published an object of class Federate representing the local federate and sent out
an initial attribute update for this object.

RETURN VALUES
The federate handle returned by this method is a numeric value that the RTI has
associated with the federate (precisely, it represents the federate's offset in a
"federate vector" that is used internally by the RTI.)  In the 1.0 RTI, this value is
probably of very little interest to the application.

WINDOWS NT NOTES
On Windows NT, the path of the FED file is given by %RTI_HOME%federation
name].fed.

EXCEPTIONS
RTI::FederateAlreadyExecutionMember - The RTI ambassador is already associated
with a federation execution.  An RTI ambassador may only be associated with one
federation execution at a given time (although the same RTI ambassador may be
associated with different federation executions at different times and different RTI
ambassadors may be associated with different federation executions at the same
time.)

RTI::FederationExecutionDoesNotExist - There was no federation executive
registered for the given named federation execution.

RTI::CouldNotOpenFED - The FED file could not be found at
$RTI_CONFIG/[federation name].fed.

RTI::ErrorReadingFED - The FED file was not in the correct format. This can occur
if one of the classes or interactions used by the MOM manager is missing or
incorrect; see the example FED files in the RTI distribution for the definitions of
MOM data types.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.



RTI 1.0 Programmer’s Guide

32

SEE ALSO
RTIambassador::createFederationExecution,
RTIambassador::resignFederationExecution RTIambassador::publishObjectClass,
RTIambassador::publishInteractionClass
RTIambassador::subscribeObjectClassAttribute,
RTIambassador::subscribeInteractionClass RTIambassador::turnRegulationOn,
RTIambassador::setTimeConstrained



RTI 1.0 Programmer’s Guide

33

3.1.4 Resign Federation Execution
NAME

resignFederationExecution - resolve ownership of attributes and notify the
federation executive that the federate no longer wishes to participate in the
federation execution

HLA INTERFACE SPECIFICATION SERVICE
2 . 4  - Federation Management (federate initiated)

SYNOPSIS
enum RTI::ResignAction      RELEASE_ATTRIBUTES = 1,
DELETE_OBJECTS,     DELETE_OBJECTS_AND_RELEASE_ATTRIBUTES,
NO_ACTION ;

void
RTIambassador::resignFederationExecution (
  RTI::ResignAction theAction
)
 throw (
   RTI::FederateOwnsAttributes,
   RTI::FederateNotExecutionMember,
   RTI::InvalidResignAction,
   RTI::ConcurrentAccessAttempted,
   RTI::RTIinternalError
 )

ARGUMENTS
   theAction    

enumerated value indicating the desired policy for relinquishment of
federate-owned attributes.

DESCRIPTION
This method informs the federation executive that the federate no longer wishes to
participate in the federation execution.  Before doing so, it is necessary to resolve
ownership of any object-attributes owned by the federate.  The four resolution
policies defined are:

    RELEASE_ATTRIBUTES    
federate releases control of any owned attributes (including privilege-to-
delete attributes) before resigning.  This is similar to doing an unconditional
divestiture of every attribute owned by the federate.  Any ownership tokens
that aren't assumed by another federate become "orphaned".  Orphaned
tokens continue to exist in the federation (specifically, they are tracked by
the RTI internally by another federate process or by the federation
executive) and are eligible for acquisition by any interested federate
(however, no notification of the existance of such attributes is provided
other than the initial RTI::requestAttributeOwnershipAssumption.)

    DELETE_OBJECTS    
resigning federate deletes all objects for which it holds the privilege to delete
(i.e. owns the privilegeToDelete attribute that is implicitly defined for every
object.)  The effect of this option is the same as if the federate had explicitly



RTI 1.0 Programmer’s Guide

34

called RTIambassador::deleteObject for every object for which it holds the
privilegeToDelte token.  If the federate owns attributes of objects for which
it does not hold the delete privilege, these attributes become "zombies" (see
NO ACTION below.)

    DELETE_OBJECTS_AND_RELEASE_ATTRIBUTES    
resigning federate first deletes any objects for which the federate holds the
delete privilege (see DELETE_OBJECTS above), then releases ownership
of any remaining owned attributes (see RELEASE_ATTRIBUTES above.)
This is probably the best option to use in most situations.

     NO_ACTION     
action is taken upon resignation; all attributes and objects owned by the
federate will become "zombies", i.e. technically still in existance in the
federation but immutable, non-discoverable and not eligible for acquisition
by other federates.

The RTIambassador::resignFederationExecution method will not return until the
ownership of all federate-owned attributes has been resolved as prescribed by the
resign action and the connection between the federate and the federation execution
has been terminated.  At this time, the internal state of the RTI ambassador will
have been reset, allowing it to be associated with another federation execution
through a subsequent invocation of RTIambassador::joinFederationExecution. The
federate ambassador associated with the federation execution is no longer needed at
this point and may be disposed of at the federate's leisure.

Any messages queued for delivery to the federate at the time of resignation will be
lost.

RETURN VALUES
A non-exceptional return indicates that the resignation was successful, as described
in the previous section.

EXCEPTIONS
RTI::FederateOwnsAttributes - Not thrown in 1.0.

RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::InvalidResignAction - The parameter specifying the ownership resolution
policy was not a recognized value.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

RTI::UnimplementedService - An invalid variation of the method was invoked.

SEE ALSO
RTIambassador::joinFederationExecution,
RTIambassador::requestAttributeOwnershipDivestiture,



RTI 1.0 Programmer’s Guide

35

FederateAmbassador::requestAttributeOwnershipAssumption,
RTIambassador::deleteObject , RTIambassador::destroyFederationExecution



RTI 1.0 Programmer’s Guide

36

3.1.5 Request Pause
NAME

requestPause - request that all federates in the federation suspend execution (as
defined by a "pause label") as soon as possible

HLA INTERFACE SPECIFICATION SERVICE
2 . 5  - Federation Management (federate initiated)

SYNOPSIS
#include <RTI.hh>

void
RTIambassador::requestPause (
  const RTI::PauseLabel label
)
 throw (
   RTI::FederationAlreadyPaused,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

ARGUMENTS
   label   

null-terminated string that is passed to the corresponding invocations of
FederateAmbassador::initiatePause.  This parameter is not interpreted by the
RTI itself, but is provided as a means for the requesting federate to specify a
textual description of the reason for the pause request or any other
information relevant in the context of the federation.  The federate is
responsible for freeing the storage associated with this string and may do so
at its leisure upon completion of the call.

DESCRIPTION
This method notifies all remote federates of the federate's desire to suspend
federation execution, resulting in invocations of the
FederateAmbassador::initiatePause method for each federate in the federation
execution.  Upon receipt of such a request, federates are expected to suspend their
execution as soon as possible and notify the RTI via the
RTIambassador::pauseAchieved method when this has been accomplished.

Note that the RTI does not attach any meaning to the notion of "pause"; federation
developers may define different types of pauses associated with different labels in a
way that makes sense in the context of a given federation.  In particular, pausing a
federate does not preclude the sending and recipt of updates and interactions or the
utilization of any other RTI services by that federate during the pause period.

The RTI does not currently define a mechanism by which a federate is automatically
notified when a requested pause has been achieved; currently the best way to do this
is to periodically call RTIambassador::initiatePause until the
RTI::FederationAlreadyPaused exception is thrown.



RTI 1.0 Programmer’s Guide

37

RETURN VALUES
A non-exceptional return indicates that federate has successfully communicated its
desire to suspend federation execution and that the federation execution is not
already paused.

EXCEPTIONS
RTI::FederationAlreadyPaused - An attempt was made to suspend execution of an
already-paused federation.

RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTIambassador::pauseAchieved, FederateAmbassador::initiatePause,
RTIambassador::requestResume, RTIambassador::initiateResume



RTI 1.0 Programmer’s Guide

38

3.1.6 Initiate Pause +
NAME

initiatePause - instructs the federate to suspend execution (as defined by a "pause
label") as soon as possible

HLA INTERFACE SPECIFICATION SERVICE
2 . 6  - Federation Management (RTI initiated)

SYNOPSIS
#include <RTI.hh>

virtual
void
FederateAmbassador::initiatePause (
  const RTI::PauseLabel label
)
 throw (
   RTI::FederateAlreadyPaused,
   RTI::FederateInternalError
 )

ARGUMENTS
   label   

null-terminated string value that was supplied as the argument to the
RTIambassador::requestPause method that requested the pause. This
parameter is not interpreted by the RTI itself, but is provided as a means for
the requesting federate to specify a textual description of the reason for the
pause request or any other information relevant in the context of the
federation.  The RTI retains ownership of the storage associated with this
string, so the federate must make a copy if it wishes to retain its value after
the completion of the call.

DESCRIPTION
This callback is invoked in response to a pause request
(RTIambassador::requestPause) made by a remote federate.  Note that the RTI does
not attach any meaning to the notion of "pause"; federation developers may define
different types of pauses associated with different labels in a way that makes sense
in the context of a given federation.  In particular, pausing a federate does not
preclude the sending and recipt of updates and interactions or the utilization of any
other RTI services by that federate during the pause period.

A pause-initiation request supercedes any previous requests; the pause label given
as an argument to RTIambassador::pauseAchieved should be the pause label
associated with the most recent pause-initiation request.

RETURN VALUES
A non-exceptional return indicates that the federate is not already paused and will
attempt to suspend execution in accordance with the pause request as soon as
possible.

EXCEPTIONS
RTI::FederateAlreadyPaused - The federate has already suspended its execution and



RTI 1.0 Programmer’s Guide

39

notified the RTI of such via the RTIambassador::pauseAchieved method.

RTI::FederateInternalError - An error internal to the federate has occurred; this
exception will result in an entry being made to the federate's RTI log.

SEE ALSO
RTIambassador::pauseAchieved, RTIambassador::requestPause,
FederateAmbassador::initiateResume



RTI 1.0 Programmer’s Guide

40

3.1.7 Pause Achieved
NAME

pauseAchieved - inform the RTI that the federation has suspended execution as per
the most recent pause request

HLA INTERFACE SPECIFICATION SERVICE
2 . 7  - Federation Management (federate initiated)

SYNOPSIS
#include <RTI.hh>

void
RTIambassador::pauseAchieved (
  const RTI::PauseLabel label
)
 throw (
   RTI::UnknownLabel,
   RTI::NoPauseRequested,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

ARGUMENTS
   label   

null-terminated "pause label" associated with the pause request. This should
be the same as the argument to the most recent
FederateAmbassador::initiatePause invocation.  The federate is responsible
for freeing the memory used by this string and may do so at any time upon
the completion of the call.

DESCRIPTION
This method informs the RTI that the federate has successfully achieved a
suspension of execution, as prescribed by the pause label argument to the most
recent FederateAmbassador::initiatePause invocation.  The federate should remain
suspended in accordance with the terms of the pause label until instructed to resume
via a FederateAmbassador::initiateResume notification.

RETURN VALUES
A non-exceptional return indicates that the RTI has been notified of the federate's
successful suspension of execution.

EXCEPTIONS
RTI::UnknownLabel - The label provided does not match the label associated with
the most recent outstanding pause request.

RTI::NoPauseRequested - There is not an outstanding pause request.

RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.



RTI 1.0 Programmer’s Guide

41

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
FederateAmbassador::initiatePause, RTIambassador::requestPause,
RTIambassador::requestResume, FederateAmbassador::initiateResume



RTI 1.0 Programmer’s Guide

42

3.1.8 Request Resume
NAME

requestResume - request that a paused federation resume execution as soon as
possible

HLA INTERFACE SPECIFICATION SERVICE
2 . 8  - Federation Management (federate initiated)

SYNOPSIS
#include <RTI.hh>

void
RTIambassador::requestResume ( )
 throw (
   RTI::FederationNotPaused,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::RTIinternalError,
   RTI::SaveInProgress,
   RTI::RestoreInProgress
 )

DESCRIPTION
This service instructs the federates in the federation execution to resume execution
as soon as possible after the successful completion of a federation pause.  The
FederateAmbassador::initiateResume method of paused remote federates will be
invoked to notify them of the continuance of federation execution.

There is currently no easy way for a federate to determine when all federates have
been resumed execution.  The Management Object Model currently provides the
only facility for doing this.

The federate requested the continuance of federation execution need not be the same
federate that requested the pause.

RETURN VALUES
A non-exceptional return indicates that the federate has successfully communicated
its desire to resume federation execution.

EXCEPTIONS
RTI::FederationNotPaused - The federation execution is not currently in a
suspended state.

RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.



RTI 1.0 Programmer’s Guide

43

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTIambassador::resumeAchieved,  FederateAmbassador::initiateResume,
RTIambassador::requestPause



RTI 1.0 Programmer’s Guide

44

3.1.9 Initiate Resume +
NAME

initiateResume - instructs a paused federate to resume execution as soon as possible

HLA INTERFACE SPECIFICATION SERVICE
2 . 9  - Federation Management (RTI initiated)

SYNOPSIS
#include <RTI.hh>

virtual
void
FederateAmbassador::initiateResume ( )
 throw (
   RTI::FederateNotPaused,
   RTI::FederateInternalError
 )

DESCRIPTION
This callback is invoked in response to another federate's request to resume
federation execution (via the RTIambassador::requestResume method.)  The
federate should resume execution as soon as possible and notify the RTI of such
using the RTIambassador::resumeAchieved service.

RETURN VALUES
A non-exceptional return indicates that the federate is currently paused and will
resume execution as soon as possible.

EXCEPTIONS
RTI::FederateAlreadyPaused - The federate is not currently in a state of suspended
execution.

RTI::FederateInternalError - An error internal to the federate has occurred; this
exception will result in an entry being made to the federate's RTI log.

SEE ALSO
RTIambassador::resumeAchieved, RTIambassador::requestResume,
FederateAmbassador::initiatePause



RTI 1.0 Programmer’s Guide

45

3.1.10 Resume Achieved
NAME

resumeAchieved - notify the RTI that the federate has resumed execution as per an
initiate resume request

HLA INTERFACE SPECIFICATION SERVICE
2 .10  - Federation Management (federate initiated)

SYNOPSIS
#include <RTI.hh>

void
RTIambassador::requestResume ( )
 throw (
   RTI::FederationNotPaused,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

DESCRIPTION
This service method is invoked to inform the RTI that the federate has resumed
execution in accordance with an outstanding FederateAmbassador::initiateResume
request.

RETURN VALUES
A non-exceptional return indicates that the federate has communicated its desire to
resume execution.

EXCEPTIONS
RTI::FederationNotPaused - The federate is not currently in a suspended state.

RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
FederateAmbassador::initiateResume, RTIambassador::requestResume,



RTI 1.0 Programmer’s Guide

46

FederateAmbassador::initiatePause



RTI 1.0 Programmer’s Guide

47

3.1.11 Request Federation Save
NAME

requestFederationSave - request that the federation save its state at a specified
logical time

HLA INTERFACE SPECIFICATION SERVICE
2 .11  - Federation Management (federate initiated)

SYNOPSIS
#include <RTI.hh>

void
RTIambassador::requestFederationSave (
  const RTI::SaveLabel label
  RTI::FederationTime theTime
)
 throw (
   RTI::FederationTimeAlreadyPassed,
   RTI::InvalidFederationTime,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

A variation initiates the save as soon as possible regardless of the logical times of
the federates:

void
requestFederationSave (
  const RTI::SaveLabel label
)
 throw (
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

ARGUMENTS
   label   

null-terminated string that is passed to the resulting invocations of
FederateAmbassador::initiateFederateSave.  This parameter is not
interpreted by the RTI itself, but is provided as a means for the requesting
federate to specify a textual description of the reason for the restore request
or any other information meaningful in the context of the federation.  This
label is also a component of the filenames in which the RTI's internal state
is expected to be saved, allowing for differentiation among multiple saved
states.  The federate is responsible for freeing the storage associated with
this string and may do so at its leisure upon completion of the call.



RTI 1.0 Programmer’s Guide

48

   theTime   
logical time that the federation save is to take place at (omission of this
argument implies that the save should take place as soon as possible.)

DESCRIPTION
This service allows the federate to initiate the federation save process.  It will result
in invocations of FederateAmbassador::initiateFederateSave being scheduled for
each remote federate.  If a logical time for the save is not specified, such a callback
will immediately be queued for delivery (note that this will usually result in different
federates being saved at 0000000different logical times.)

RETURN VALUES
A non-exceptional return indicates that the federation save has been initiated.

EXCEPTIONS
RTI::FederationTimeAlreadyPassed - The requested save time is less than the
current effective federate logical time (i.e. the federate's logical time plus
lookahead.)

RTI::InvalidFederationTime - The requested save time is invalid because it is less
than the effective logical time of one or more federates currently joined in the
federation execution.

RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTIambassador::initiateFederateSave, RTIambassador::federateSaveBegun,
FederateAmbassador::requestRestore, RTIambassador::federateSaveAchieved,
RTIambassador::federateSaveNotAchieved,
FederateAmbassador::timeAdvanceGrant, RTIambassador::requestFederateTime



RTI 1.0 Programmer’s Guide

49

3.1.12 Initiate Federate Save +
NAME

initiateFederateSave - instructs the federate to save its state as of its current logical
time

HLA INTERFACE SPECIFICATION SERVICE
2 .12  - Federation Management (RTI initiated)

SYNOPSIS
#include <RTI.hh>

virtual
void
FederateAmbassador::initiateFederateSave (
  const RTI::SaveLabel label
)
 throw (
   RTI::UnableToPerformSave,
   RTI::FederateInternalError
 )

virtual
void
FederateAmbassador::initiateFederateSave (
  const RTI::SaveLabel label
  RTI::FederationTime theTime
)
 throw (
   RTI::InvalidFederationTime,
   RTI::UnableToPerformSave,
   RTI::FederateInternalError
 )

ARGUMENTS
   label   

null-terminated string that was passed to invocation of the
RTIambassador::requestFederationSave service that requested the save.
This parameter is not interpreted by the RTI itself, but is provided as a
means for the requesting federate to specify a textual description of the
reason for the save request or any other information meaningful in the
context of the federation.  The federate must make a copy of this parameter
if it wishes to retain its value after the completion of the call.

   theTime   
federation save time as specified to the invocation of the
RTIambassador::requestFederationSave service that requested the save.
Note that this parameter is not really necessary as the RTI schedules the
federate save initiation at the appropriate time, i.e. such that the federate
should always begin its save as soon as possible after the receipt of this
callback.

DESCRIPTION



RTI 1.0 Programmer’s Guide

50

This callback instructs the federate to begin saving its state as soon as possible.
The federate should save its state as of the current federate logical time
(RTIambassador::requestFederateTime), which should be the same as the theTime
parameter (if present.)  The RTI will not initiate the federate save until it has
determined that it is "safe" for the federate to advance to the save time, i.e. the
conditions necessary for a FederateAmbassador::timeAdvanceGrant to the save time
have been met.

Upon the receipt of such a callback, the federate's logical time will not advance until
the federate has achieved the save or indicated that the save could not be achieved.
In particular, no time-stamp-ordered events with a time greater than the save time
will be delivered to the federate, and no FederateAmbassador::timeAdvanceGrant
will be made.

The federate should notify the RTI using the RTIambassador::federateSaveBegun
service when it has begun the save process.

RETURN VALUES
A non-exceptional return value indicates that the federate has acknowledged the
save initiation request and will begin saving its state as soon as possible, notifying
the RTI of such via the RTIambassador::federateSaveBegun service.

EXCEPTIONS
RTI::InvalidFederationTime - The specified time is less than the federate's current
logical time or greater than the time that the federation mostly recently requested to
advance to.

RTI::UnableToPerformSave - The federate is unable to perform a save at the current
time.

RTI::FederateInternalError - An error internal to the federate has occurred; this
exception will result in an entry being made to the federate's RTI log.

SEE ALSO
RTIambassador::requestFederationSave, RTIambassador::federateSaveBegun,
FederateAmbassador::requestRestore, RTIambassador::federateSaveAchieved,
RTIambassador::federateSaveNotAchieved,
FederateAmbassador::timeAdvanceGrant, RTIambassador::requestFederateTime



RTI 1.0 Programmer’s Guide

51

3.1.13 Federate Save Begun
NAME

federateSaveBegun - notify the RTI that the federate has begun saving its internal
state as per an initiateFederateSave request

HLA INTERFACE SPECIFICATION SERVICE
2 .13  - Federation Management (federate initiated)

SYNOPSIS
#include <RTI.hh>

void
RTIambassador::federateSaveBegun ( )
 throw (
   RTI::SaveNotInitiated,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

A variation is unimplemented:

void
RTIambassador::federateSaveBegun (
  RTI::FederationTime theTime
)
 throw (
   RTI::SaveNotInitiated,
   RTI::InvalidFederationTime,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::RTIinternalError,
   RTI::UnimplementedService
 )

ARGUMENTS
   theTime       (unused)   

logical time of the federate as of the save.  This parameter is unnecessary, as
the federate save necessarily must begin at the same logical time as the
FederateAmbassador::initiateFederateSave request.

DESCRIPTION
The federate utilizes this service to inform the RTI that it has begun saving its state
in compliance with an outstanding FederateAmbassador::initiateFederateSave
request.  The federate should do this as soon as possible after the initiation of the
save and will be unable to advance in time (and therefore receive time-stamp-
ordered events) or utilize any other service that would change the internal state of
the RTI until the completion of the save.

The federate should notify the RTI using the



RTI 1.0 Programmer’s Guide

52

RTIambassador::federateSaveAchieved or
RTIambassador::federateSaveNotAchieved services when the save has been
completed.  At this time the RTI will wait for all other federates to complete their
saves and then save its internal state.

RETURN VALUES
A non-exceptional return indicates that the RTI acknowledges the beginning of the
federate save and the federate may proceed to save its state.

EXCEPTIONS
RTI::SaveNotInitiated - There is no currently outstanding request for a federate
save.

RTI::InvalidFederationTime - The federation time argument provided does not
match the time of the save, i.e. the federate's current logical time.  (Not thrown in
RTI 1.0.)

RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in the RTI; consult the
federate log file for more details.

RTI::UnimplementedService - This service is not implemented in RTI 1.0.

SEE ALSO
FederateAmbassador::initiateFederateSave, RTIambassador::federateSaveAchieved,
RTIambassador::federateSaveNotAchieved



RTI 1.0 Programmer’s Guide

53

3.1.14 Federate Save Achieved
NAME

federateSaveAchieved, federateSaveNotAchieved - notify the RTI that the federate
has completed an attempted federate save

HLA INTERFACE SPECIFICATION SERVICE
2 .14  - Federation Management (federate initiated)

SYNOPSIS
#include <RTI.hh>

void
RTIambassador::federateSaveAchieved ( )
 throw (
   RTI::SaveNotInitiated,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::RTIinternalError
 )

void
RTIambassador::federateSaveNotAchieved ( )
 throw (
   RTI::SaveNotInitiated,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::RTIinternalError
 )

DESCRIPTION
This service should be invoked by the federate when it has completed a federate
save begun by an RTIambassador::federateSaveBegun service call as per a
FederateAmbassador::initiateFederateSave request.

This service blocks until all other federates have completed or failed to save their
states, then saves the internal state of the RTI in the file RTIxxx-n.sav where xxx
is the save label and n is the federate's federate handle.  These files will be located
in the $RTI_CONFIG directory.

If the federate save was not achieved, the RTI will make an entry to the federate's
RTI log file and proceed as if the save was successful (i.e. the internal state of the
RTI will still be saved.)

Upon return from this method the federate's logical time will continue advancing as
prescribed by the time-advance service in effect at the time of the save.

RETURN VALUES
A non-exceptional return indicates that the RTI has successfully saved its internal
state and will resume advancement of the federate's logical time.

EXCEPTIONS
RTI::SaveNotInitiated - There is no currently outstanding request for a federate save



RTI 1.0 Programmer’s Guide

54

or the federate has not indicated the beginning of the save through the
RTIambassador::federateSaveBegun method.

RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::RTIinternalError - An internal error has occurred in the RTI; consult the
federate log file for more details.

SEE ALSO
RTIambassador::requestFederationSave, RTIambassador::federateSaveBegun,
RTIambassador::requestRestore, FederateAmbassador::initiateFederateSave



RTI 1.0 Programmer’s Guide

55

3.1.15 Request Restore
NAME

requestRestore - request that all federates reinitialize themselves based on a labeled
save state

HLA INTERFACE SPECIFICATION SERVICE
2 .15  - Federation Management (federate initiated)

SYNOPSIS
#include <RTI.hh>

void
RTIambassador::requestRestore (
  const RTI::SaveLabel label
)
 throw (
   RTI::SpecifiedSaveLabelDoesNotExist,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

ARGUMENTS
   label   

null-terminated string that is passed to the resulting invocations of
FederateAmbassador::initiateRestore.  This parameter is not interpreted by
the RTI itself, but is provided as a means for the requesting federate to
specify a textual description of the reason for the restore request or any
other information meaningful in the context of the federation.  This label is
also a component of the filenames in which the RTI's internal state is
expected to be saved, so it should match a label that has previously been
used as an argument to a save operation.  The federate is responsible for
freeing the storage associated with this string and may do so at its leisure
upon completion of the call.

DESCRIPTION
This service instructs all federates to restore their state to the state saved under the
specified label.  Unlike the counterpart "save" operation, restoration cannot be
scheduled at a specific logical time across all federates; rather, it is initiated
immediately upon the receipt of an RTIambassador::requestRestore request (this
makes sense when you consider that the restored logical times will override the pre-
restoration values anyways.)  It is often desireable to pause the federation execution
before a state restoration.

Upon receipt of such a request by a given federate, the federate's
FederateAmbassador::initiateRestore callback will be invoked to instruct the federate
to immediately begin restoring its state.  The RTI does not define a format or
provide any facility for federates to save their external state, so it is up to the
federate developer to implement the appropriate mechanisms.  The RTI is
responsible for restoring its internal state and will do so when the federate indicates



RTI 1.0 Programmer’s Guide

56

(using the RTIambassador::restoreAchieved or
RTIambassador::restoreNotAchieved services) that it has finished restoring its
external state.

Only one restoration request may be outstanding at a given (wallclock) time;
subsequent invocations of RTIambassador::requestRestore will override previous
requests.

Note that the RTI attempts to restore its internal state from the file
$RTI_CONFIG/RTIxxx-n.sav where xxx is the restore label and n is the
federate handle.  This means that federates must join the federation execution in a
consistent order if the restored internal states are to match up with the same
federates.

RETURN VALUES
A non-exceptional return indicates that the federate has successfully communicated
its desire to restore federation state from a labelled saved state.

EXCEPTIONS
RTI::SpecifiedSaveLabelDoesNotExist - The file where the RTI expects to find its
saved internal state does not exist.

RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTIambassador::requestFederationSave, RTIambassador::restoreAchieved,
RTIambassador::restoreNotAchieved, FederateAmbassador::initiateRestore



RTI 1.0 Programmer’s Guide

57

3.1.16 Initiate Restore +
NAME

initiateRestore - instructs the federate to restore its state from a labelled save state

HLA INTERFACE SPECIFICATION SERVICE
2 .16  - Federation Management (RTI initiated)

SYNOPSIS
#include <RTI.hh>

virtual
void
FederateAmbassador::initiateRestore (
  const RTI::SaveLabel label
)
 throw (
   RTI::SpecifiedSaveLabelDoesNotExist,
   RTI::CouldNotRestore,
   RTI::FederateInternalError
 )

ARGUMENTS
   label   

null-terminated string that was given as a parameter to the
RTIambassador::requestRestore service requesting the restoration. This
parameter is not interpreted by the RTI itself, but is provided as a means for
the requesting federate to specify a textual description of the reason for the
restore request or any other information meaningful in the context of the
federation.  The federate must make a copy of this parameter if it wishes to
retain its value after the completion of the call.

DESCRIPTION
This callback instructs the federate to begin restoring its state immediately.  Upon
receipt of such a callback, the federate will be in "restore mode" and will be unable
to utilize most of the RTI ambassador services (with the notable exception of
RTIambassador::tick.)

When the federate has restored its state (or failed in the attempt) it should notify the
RTI of such using the RTIambassador::restoreAchieved or
RTIambassador::restoreNotAchieved services.  At this time the RTI will attempt to
reinitialize its internal state from a file whose name is derived from the federate
handle and specified save label.  See the description of the aforementioned services
for more details on this process.

RETURN VALUES
A non-exceptional return value indicates that the federate has acknowledged the
request and will begin restoring its state immediately.  An exceptional return value
will result in an entry being made to the federate's RTI log file; the federate is still
expected to proceed with the restoration.

EXCEPTIONS
RTI::SpecifiedSaveLabelDoesNotExist - The specified save label does not



RTI 1.0 Programmer’s Guide

58

correspond to an existing labelled saved state.

RTI::CouldNotRestore - The federate recognizes the save label but was unable to
restore its state for some other reason.

RTI::FederateInternalError - An error internal to the federate has occurred; this
exception will result in an entry being made to the federate's RTI log.

SEE ALSO
federateAmbassador::initiateFederateSave, RTIambassador::requestRestore,
RTIambassador::restoreAchieved, RTIambassador::restoreNotAchieved



RTI 1.0 Programmer’s Guide

59

3.1.17 Restore Achieved
NAME

restoreAchieved, restoreNotAchieved - notify the RTI that the federate has
completed an attempted federate restoration

HLA INTERFACE SPECIFICATION SERVICE
2 .17  - Federation Management (federate initiated)

SYNOPSIS
#include <RTI.hh>

void
RTIambassador::restoreAchieved ( )
 throw (
   RTI::RestoreNotRequested,
   RTI::RTIcanNotRestore,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::RTIinternalError
 )

void
RTIambassador::restoreNotAchieved ( )
 throw (
   RTI::RestoreNotRequested
   RTI::RTIcanNotRestore,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::RTIinternalError
 )

DESCRIPTION
These services are invoked by the federate when it has completed (or failed to
complete) a state restoration as per a FederateAmbassador::initiateRestore request.

Both of these services block until all other federates have restored or failed to
restore their states, then attempts to restore the internal state of the RTI from the file
RTIxxx-n.sav where xxx is the save label and n is the federate's federate handle.
These files should be located in the $RTI_CONFIG directory.

Note that the RTIambassador::restoreNotAchieved method makes an entry to the
federate's RTI log file and proceeds as though the restoration had succeeded, i.e.
the RTI internal state is still restored.

RETURN VALUES
A non-execptional return indicates that all the federates in the federation have
finished restoring their states and that the internal state of the RTI has been restored.

EXCEPTIONS
RTI::RestoreNotRequested - There is no currently outstanding request for a federate
restoration.



RTI 1.0 Programmer’s Guide

60

RTI::RTIcanNotRestore - The RTI internal state save file is missing or corrupt.

RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::RTIinternalError - An internal error has occurred in the RTI; consult the
federate log file for more details.

SEE ALSO
RTIambassador::requestRestore, RTIambassador::requestFederationSave,
FederateAmbassador::initiateRestore



RTI 1.0 Programmer’s Guide

61

3.2 Declaration Management

Table 3-24: Declaration Management Services

Section Service Title Service
Implemented

3.1 Publish Object Class Yes
3.2 Publish Interaction Class Yes
3.3 Subscribe Object Class Attribute Yes (No regions)
3.4 Subscribe Interaction Class Yes (No regions)
3.5 Control Updates † Yes
3.6 Control Interactions † Yes



RTI 1.0 Programmer’s Guide

62

3.2.1 Publish Object Class
NAME

publishObjectClass, unpublishObjectClass - indicate the intention of the federate to
begin (or cease) creating instances and acquiring attributes of a given object class

HLA INTERFACE SPECIFICATION SERVICE
3 . 1  - Declaration Management (federate initiated)

SYNOPSIS
#include <RTI.hh>

void
RTIambassador::publishObjectClass (
  RTI::ObjectClassHandle theClass
  const RTI::AttributeHandleSet& attributeList
)
 throw (
   RTI::ObjectClassNotDefined,
   RTI::AttributeNotDefined,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

void
RTIambassador::unpublishObjectClass (
  RTI::ObjectClassHandle theClass
)
 throw (
   RTI::ObjectClassNotDefined,
   RTI::FederateOwnsAttributes,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

ARGUMENTS
   theClass   

object class that the federate wishes to begin or cease publication of.

   attributeHandleSet   
set of attributes of the specified object class that the federate intends to own
or update.  The caller is responsible for freeing the storage space used by
the attribute set and may do so at any time after the completion of the call.

DESCRIPTION
RTIambassador::publishObjectClass indicates to the RTI that the federate is capable
of producing updates for the specified attributes of the specified object class.  A



RTI 1.0 Programmer’s Guide

63

federate must be publishing a given object class and attribute to acquire ownership
of instances of that attribute, whether through creation of new objects or acquisition
of existing attribute-instances through ownership management services. The
federate must publish an object class before attempting to register new objects of
that class.

The privilegeToDelete attribute that is inherently defined for every object class is
implicitly published for any object class published by the federate.

Multiple calls to RTIambassador::publishObjectClass for the same object class
replace the previously published attribute set for the class (henceforth this is
referred to as "republishing" the object class.)  Publishing an object class does not
imply the publication of subclasses; each specific subclass must also be explicitly
published.

RTIambassador::unpublishObjectClass removes the specified object class and any
of its subclasses from the set of object classes published by the federate.  Any valid
object class is a valid parameter to the RTIambassador::unpublishObjectClass
method; the object class need not actually be published by the federate.  For
example, a federate wishing to unpublish all object classes can do so with one call
to RTIambassador::unpublishObjectClass with an argument of
ROOT_OBJECT_CLASS_HANDLE, the handle of the RTI-defined object class
from which all federation-defined object classes are implicitly defined.

Note that unpublication only affects the acquisition of new attribute-instances; it
does not relieve the federate of update responsibility for any attributes already
owned.

Classes derived from the MOM-defined Manager object class are handled as a
special case by the (un)publication services.  All subclasses of Manager are
implicitly published by the MOM manager and must remain published throughout
the lifetime of the federation execution.  If the federate attempts to republish a
descendent of Manager with a different set of attributes, this set must contain all of
the attributes pre-defined by the MOM (if it doesn't, the object manager will
automatically add these attributes to the new set of published attributes.)
RTIambassador::unpublishObjectClass will not allow the unpublication of Manager
descendents.  Future versions may allow unpublication of non-MOM-defined
attributes; for now this functionality can be achieved by republishing the object
class with an attribute set consisting of only the predefined attributes.

Upon publication of a given object class, the federate may receive an
FederateAmbassador::startUpdates callback instructing it to begin updating a set of
attributes of that class.  Until the receipt of such a callback, the federate need not
send out any updates of the attributes in question to satisfy its publication
responsibility.  If no other federates have expressed interest in the published
attributes, this callback will never be made.

A FederateAmbassador::stopUpdates callback negates the effect of the previous
FederateAmbassador::startUpdates and can result from unpublication of the object
class or lack of subscription interest among the rest of the federates.  In the later
case, the federate may continue updating the attributes in question, but is not
required to do so.

Note that these callbacks do not occur synchronously with respect to the



RTI 1.0 Programmer’s Guide

64

(un)publication service, but rather are scheduled at a later time for delivery via the
RTIambassador::tick service.

RETURN VALUES
A non-exceptional return from RTIambassador::publishObjectClass indicates that
the given set of attributes has been published for the object class, possibly replacing
an existing set of published attributes.  The federate is then eligible to create objects
of the given object class and to acquire instances of the specified attributes via
ownership management services.

A non-exceptional return from RTIambassador::unpublishObjectClass indicates that
the object class and all of its descendents have been unpublished, or that the object
class is a derivative of Manager and the unpublication mechanism has silently
refused to unpublish it. The federate may no longer create objects or acquire
attributes of the given object class or any of its subclasses.

EXCEPTIONS
RTI::AttributeNotDefined - One or more attribute handles in the attribute-handle set
is not valid in the context of the specified object class.

RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::FederateOwnsAttributes - The federate holds ownership tokens for object
attributes that would be affected by the unpublication request.  (not thrown in 1.0)

RTI::ObjectClassNotDefined - The object class handle is not valid in the context of
the current federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTIambassador::publishInteractionClass,  RTIambassador::registerObject
RTIambassador::subscribeObjectClassAttribute,
RTIambassador::updateAttributeValues,
RTIambassador::requestAttributeOwnershipAcquisition,
FederateAmbassador::startUpdates,  FederateAmbassador::stopUpdates
RTI::AttributeHandleSet



RTI 1.0 Programmer’s Guide

65

3.2.2 Publish Interaction Class
NAME

publishInteractionClass, unpublishInteractionClass -- convey the intention of the
federate to begin (or cease) generating interactions of a given interaction class

HLA INTERFACE SPECIFICATION SERVICE
3 . 2  - Declaration Management (federate initiated)

SYNOPSIS
#include <RTI.hh>

void
RTIambassador::publishInteractionClass (
  RTI::InteractionClassHandle theInteraction
)
 throw (
   RTI::InteractionClassNotDefined,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

void
RTIambassador::unpublishInteractionClass (
  RTI::InteractionClassHandle theInteraction
)
 throw (
   RTI::InteractionClassNotDefined,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

ARGUMENTS
   theInteraction    

handle of the interaction class to be (un)published

DESCRIPTION
The FederateAmbassador::publishInteractionClass
(FederateAmbassador::unpublishInteractionClass) method should be invoked by the
federate when it wishes to notify the RTI that it will begin (end) the generation of
the specified class of interactions. Attempts to generate an interaction whose class is
unpublished will result in an RTI::InteractionClassNotPublished exception.

Publication of an interaction class does not imply the publication of subclasses of
that class; each specific subclass must be explicitly published.  On the other hand,
unpublication of an interaction class also results in the unpublication of any of its
published subclasses. The interaction class specified as the argument to



RTI 1.0 Programmer’s Guide

66

RTIambassador::unpublishInteractionClass need not actually be published; a
federate could, for example, unpublish all interactions by unpublishing
ROOT_INTERACTION_CLASS_HANDLE, the handle of the RTI-defined
interaction class from which all federation-defined interaction classes are implicitly
derived.

The federate may receive a FederateAmbassador::startInteractionGeneration callback
for a published interaction class.  Until such time, the federate may assume that no
other federates have a subscription interest in the interaction class in question and
that it is not necessary to generate that class of interaction.  A
FederateAmbassador::stopInteractionGeneration callback, which can result from an
unpublication or cessation of subscription interest, negates the effect of
FederateAmbassador::startInteractionGeneration.

Note that these callbacks do not occur synchronously with respect to the
(un)publication service, but rather are scheduled at a later time for delivery via the
RTIambassador::tick service.

RETURN VALUES
A non-exceptional return from RTIambassador::publishInteractionClass indicates
that the specified interaction class has been added to the set of interactions published
by the federate; the federate may begin generating interactions of this class.

A non-exceptional return from RTIambassador::unpublishInteractionClass indicates
that the specified interaction class and all of its descendents have been removed
from the set of interactions published by the federate; the federate may no longer
generate interactions of these classes.

EXCEPTIONS
RTI::InteractionClassNotDefined - The specified interaction class handle is not valid
within the context of the current federation execution.

RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTIambassador::publishObjectClass, RTIambassador::sendInteraction,
FederateAmbassador::subscribeInteractionClass,
FederateAmbassador::startInteractionGeneration,
FederateAmbassador::stopInteractionGeneration



RTI 1.0 Programmer’s Guide

67

3.2.3 Subscribe Object Class Attribute
NAME

subscribeObjectClassAttribute, unsubscribeObjectClassAttribute - declare or
withdraw federate interest in receiving updates for a set of attributes

HLA INTERFACE SPECIFICATION SERVICE
3 . 3  - Declaration Management (federate initiated)

SYNOPSIS
 #include <RTI.hh>

void
RTIambassador::subscribeObjectClassAttribute (
  RTI::ObjectClassHandle theClass
  const RTI::AttributeHandleSet& attributeList
)
 throw (
   RTI::ObjectClassNotDefined,
   RTI::AttributeNotDefined,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

void
RTIambassador::unsubscribeObjectClassAttribute (
  RTI::ObjectClassHandle theClass
)
 throw (
   RTI::ObjectClassNotDefined,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

Variants supporting subscription regions are not implemented in 1.0:

void
RTIambassador::subscribeObjectClassAttribute (
  RTI::ObjectClassHandle theClass
  RTI::AttributeHandle theAttribute
  RTI::Region theRegion
)
 throw (
   RTI::ObjectClassNotDefined,
   RTI::AttributeNotDefined,
   RTI::RegionNotKnown,
   RTI::FederateNotExecutionMember,



RTI 1.0 Programmer’s Guide

68

   RTI::ConcurrentAccessAttempted,
   RTI::RTIinternalError,
   RTI::UnimplementedService
 )

void
RTIambassador::unsubscribeObjectClassAttribute (
  RTI::ObjectClassHandle theClass
  RTI::Region theRegion
)
 throw (
   RTI::ObjectClassNotDefined,
   RTI::RegionNotKnown,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::RTIinternalError,
   RTI::UnimplementedService
 )

ARGUMENTS
   theClass   

class handle of the object class whose subscription status will be affected by
the call

   attributeList   
of attributes of the object class to subscribe to.  The caller is responsible for
freeing the storage associated with this list and may do so at any time after
the completion of the call.

DESCRIPTION
These two methods are used by the federate to manipulate the types of data it
wishes to have presented to the federate ambassador.

All examples in this section refer to the following class hierarchy (transport and
ordering policies not shown):

(class Beverage           (attribute Volume)           (attribute Price)           (class
CarbonatedBeverage                  (attribute Carbonation)                  (class Soda
(attribute Caffeine)                         (attribute BrandName))))

Subscription to an object class does not imply subscription to any subclasses of that
object class; however, instances of non-subscribed subclasses will be promoted to
the most specific subscribed object class for discovery by the federate ambassador.
In doing so, the object manager filters out attributes that are not valid in the context
of the discovered object class.  For example, if a federate subscribes to all attributes
of class CarbonatedBeverage and another federate creates an instance of Soda, this
instance will be discovered as a CarbonatedBeverage, and the soda-specific
attributes (Caffeine and BrandName) will be filtered out of the set of attributes
presented to FederateAmbassador::reflectAttributeValues.  Attribute subscriptions
are not cumulative with respect to class hierarchies; for example, if a federate
subscribes to object class CarbonatedBeverage with attributes Carbonation and
Volume and object class Beverage with attributes Volume and Price, attribute
updates for CarbonatedBeverage will not present the Price attribute to the federate
ambassador, as it only uses the attribute subscription set for the most-specific



RTI 1.0 Programmer’s Guide

69

subscribed object class.

If RTIambassador::subscribeObjectClassAttribute is invoked with an object class
that is already subscribed, the new attribute set replaces the existing subscribed
attribute set.  Subscription does not affect objects that have already been discovered
by the federate ambassador; for example, if a federate initially subscribes to only
Beverage but later subscribes to Soda, Soda instances that have previously been
discovered as Beverage will not be rediscovered as the more specific object class.

Objects will not be discovered by the federate ambassador until an attribute update
is received following the subscription of a relevant object class.  Federates may
wish to utilize the RTIambassador::requestObjectAttributeValueUpdate service to
explicitly request an attribute update for pre-existing objects, especially if the
attributes in question are only updated sporadically.

RTIambassador::unsubscribeObjectClassAttribute removes the specified object
class and any of its subclasses from the set of object classes that will be presented
to the federate ambassador.  The specified object class need not actually be
subscribed by the federate; for example, the federate may wish to unsubscribe all
object classes by unsubscribing ROOT_OBJECT_CLASS_HANDLE, the handle
of the RTI-defined object class from which all federation-defined object classes are
implicitly derived.

Removal of an object class from the subscription set results in the removal of all
instances of that class from the set of objects known to the federate ambassador.
The federate ambassador will be informed of such through invocations of the
"FederateAmbassador::removeObject" method (this notification is not delivered
synchronously with respect to the unpublication method, but is queued up for later
processing by the "RTIambassador::tick" service.)  If the federate holds any
attribute ownership tokens for objects removed from the federate ambassador, the
object manager will automatically resolve ownership of these tokens; see the
discussion of RELEASE_ATTRIBUTES in the
RTIambassador::resignFederationExecution documentation for a detailed
description of this process.

Object classes derived from the Management Object Model (MOM)-defined
Manager class are not treated as a special case as they are by the publication
services.

RETURN VALUES
A non-exceptional return from RTIambassador::subscribeObjectClassAttribute
indicates that the federate has subscribed to the given object class and attribute set,
replacing the existing attribute subscription set, if any.  Future attribute updates of
the subscribed attributes will be presented to the federate ambassador via the
FederateAmbassador::reflectAttributeValues method.

A non-exceptional return from RTIambassador::unsubscribeObjectClassAttribute
indicates that the given object class and any of its subclasses has been removed
from the set of subscribed classes.  All discovered instances of the affected classes
have been queued for deletion from the set of objects known by the federate
ambassador, and updates for the affected attributes will no longer be presented to
the federate ambassador via the FederateAmbassador::reflectAttributeValues
method.  The object manager will attempt to divest attribute ownership tokens of
any removed objects "behind the scenes".



RTI 1.0 Programmer’s Guide

70

EXCEPTIONS
RTI::ObjectClassNotDefined - The specified object class handle is not valid within
the context of the current federation execution.

RTI::AttributeNotDefined - One or more of the specified attribute handles is not
valid within the context of the specified object class.

RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTIambassador::publishObjectClass, FederateAmbassador::discoverObject,
FederateAmbassador::removeObject, FederateAmbassador::reflectAttributeValues,
RTIambassador::subscribeInteractionClass,
RTIambassador::requestObjectAttributeValueUpdate, RTI::AttributeHandleSet



RTI 1.0 Programmer’s Guide

71

3.2.4 Subscribe Interaction Class
NAME

subscribeInteractionClass, unsubscribeInteractionClass - declare or withdraw
federate interest in receiving a given class of interactions

HLA INTERFACE SPECIFICATION SERVICE
3 . 4  - Declaration Management (federate initiated)

SYNOPSIS
#include <RTI.hh>

void
RTIambassador::subscribeInteractionClass (
  RTI::InteractionClassHandle theClass
)
 throw (
   RTI::InteractionClassNotDefined,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::FederateLoggingServiceCalls,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

void
RTIambassador::unsubscribeInteractionClass (
  RTI::InteractionClassHandle theClass
)
 throw (
   RTI::InteractionClassNotDefined,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

Variants supporting  subscription regions are not implemented in 1.0:

void
RTIambassador::subscribeInteractionClass (
  RTI::InteractionClassHandle theClass
  RTI::Region theRegion
)
 throw (
   RTI::InteractionClassNotDefined,
   RTI::RegionNotKnown,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::RTIinternalError,
   RTI::UnimplementedService



RTI 1.0 Programmer’s Guide

72

 )

void
RTIambassador::unsubscribeInteractionClass (
  RTI::InteractionClassHandle theClass
  Region theRegion
)
 throw (
   RTI::InteractionClassNotDefined,
   RTI::RegionNotKnown,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::RTIinternalError,
   RTI::UnimplementedService
 )

ARGUMENTS
   theClass   

interaction class handle of the interaction class whose subscription status
will be affected by the call

DESCRIPTION
These two methods are used by the federate to manipulate the set of interaction
classes whose instances will be presented to the federate via the
FederateAmbassador.

Subscription to an interaction class does not imply subscription to any subclasses of
that interaction class; however, instances of non-subscribed subclasses will be
promoted to the most specific subscribed interaction class for presentation to the
federate ambassador.  For example, if a federate subscribes to interaction class Foo
but not its subclass Bar, the interaction manager will promote incoming Bar
interactions to Foo for presentation to FederateAmbassador::receiveInteraction; this
includes the filtering out of parameters that are specific to class Bar.

Unlike object attributes, it is not possible to subscribe to a subset of interaction
parameters; subscription to an interaction class implies subscription to every
parameter of that interaction class.

Unsubscription of an interaction class also unsubscribes any subclasses of the
interaction class.  The specified interaction class need not actually be subscribed by
the federate; for example, the federate may wish to unsubscribe all interaction
classes by calling RTIambassador::unsubscribeInteractionClass with an argument
of ROOT_INTERACTION_CLASS_HANDLE, the handle of the RTI-defined
interaction class from which all federation-defined interaction classes are implicitly
defined.

RETURN VALUES
A non-exceptional return from RTIambassador::subscribeInteractionClass indicates
a successful subscription to the specified interaction class; future receipts of
instances of the interaction class or any of its subclasses will be presented to the
FederateAmbassador::receiveInteraction method (after any necessary class
promotion and parameter filtering is done.)

A non-exceptional return from RTIambassador::unsubscribeInteractionClass



RTI 1.0 Programmer’s Guide

73

indicates a successful unsubscription of the specified interaction class and all of its
subclasses; future receipts of instances of the affected interaction classes will not be
presented to the federate ambassador.

EXCEPTIONS
RTI::InteractionClassNotDefined - The interaction class handle is not valid within
the context of the current federation execution.

RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTIambassador::publishInteractionClass, FederateAmbassador::receiveInteraction,
RTIambassador::subscribeObjectClassAttribute,
FederateAmbassador::startInteractionGeneration,
FederateAmbassador::stopInteractionGeneration



RTI 1.0 Programmer’s Guide

74

3.2.5 Control Updates +
NAME

startUpdates, stopUpdates - informs the federate that it should begin (or cease)
updating a given set of attributes of a given class

HLA INTERFACE SPECIFICATION SERVICE
3 . 5  - Declaration Management (RTI initiated)

SYNOPSIS
virtual
void
FederateAmbassador::startUpdates (
  RTI::ObjectClassHandle theClass
  const RTI::AttributeHandleSet& theAttributes
)
 throw (
   RTI::ObjectClassNotPublished,
   RTI::AttributeNotPublished,
   RTI::FederateInternalError
 )

virtual
void
FederateAmbassador::stopUpdates (
  RTI::ObjectClassHandle theClass
  const RTI::AttributeHandleSet& theAttributes
)
 throw (
   RTI::ObjectClassNotPublished,
   RTI::AttributeNotPublished,
   RTI::FederateInternalError
 )

ARGUMENTS
   theClass   

class whose attributes the federate should begin (or cease) updating.

   theAttributes   
set of attributes of the given class that the federate should begin (or cease)
updating.  The caller maintains ownership of the storage space associated
with this set; the federate ambassador should make a copy if it wishes to
retain this information after completion of the call.

DESCRIPTION
RTI invokes this callback to notify the federate that it should (or should not)
generate updates of the specified set of attributes of the specified class.  Such a
notification applys only the specific object class given and is not intended to affect
the update-generation status of any subclasses; if RTI wishes the federate to begin
or cease update generation of a hierarchy of classes it will issue an explicit
notification for each class in the hierarchy.

The federate will receive a FederateAmbassador::startUpdates notification when it



RTI 1.0 Programmer’s Guide

75

has published an attribute for which one or more other federates have declared a
subscription interest.  The FederateAmbassador::stopUpdates notification is issued
when one of these conditions fails to hold, i.e. the federate has unpublished the
attribute or all other federates have withdrawn their subscription interests.

The federate may still update any published attributes for which it has not received a
FederateAmbassador::startUpdates notification; these callbacks should be seen
merely as suggestions.

RETURN VALUES
A non-exceptional return from FederateAmbassador::startUpdates
(FederateAmbassador::stopUpdates) indicates that the federate recognizes the object
and has acknowledged the request to begin (cease) updating the specified set of
attributes.

Exceptions thrown from these methods will cause any entry to be made in the
federate's RTI log and otherwise ignored.

EXCEPTIONS
RTI::ObjectClassNotPublished - The object class handle is not recognized or the
object class is not published by the federate.

RTI::AttributeNotPublished - One or more of the attribute handles is not recognized
or the attribute is not published by the federate.

RTI::FederateInternalError - An error internal to the federate has occurred; this
exception will result in an entry being made to the federate's RTI log.

SEE ALSO
FederateAmbassador::startInteractionGeneration,
RTIambassador::publishObjectClass



RTI 1.0 Programmer’s Guide

76

3.2.6 Control Interactions +
NAME

startInteractionGeneration, stopInteractionGeneration - informs the federate that is
should begin (or cease) the generation of a specified class of interaction

HLA INTERFACE SPECIFICATION SERVICE
3 . 6  - Declaration Management (RTI initiated)

SYNOPSIS
virtual
void
FederateAmbassador::startInteractionGeneration (
  RTI::InteractionClassHandle theHandle
)
 throw (
   RTI::InteractionClassNotPublished,
   RTI::FederateInternalError
 )

virtual
void
FederateAmbassador::stopInteractionGeneration (
  RTI::InteractionClassHandle theHandle
)
 throw (
   RTI::InteractionClassNotPublished,
   RTI::FederateInternalError
 )

ARGUMENTS
   theHandle   

class of interactions the federate should begin (or cease) the generation of.

DESCRIPTION
RTI invokes this callback to notify the federate that it should (or should not)
generate interactions of the specified class.  Such a notification applys only the
specific interaction class given and is not intended to affect the update-generation
status of any subclasses; if RTI wishes the federate to begin or cease update
generation of a hierarchy of classes it will send an explicit notification for each class
in the hierarchy.

The federate will receive a FederateAmbassador::startInteractionGeneration
notification when it has published an interaction class for which one or more other
federates have declared a subscription interest.  The
FederateAmbassador::stopInteractionGeneration notification is issued when one of
these conditions fails to hold, i.e. the federate has unpublished the interaction class
or all other federates have withdrawn their subscription interests.

The federate may still generate interactions of any published class for which it has
not received a FederateAmbassador::startInteractionGeneration notification; these
callbacks should be seen merely as suggestions.



RTI 1.0 Programmer’s Guide

77

RETURN VALUES
A non-exceptional return indicates that the federate recognizes the interaction class
handle and will begin (or cease) the generation of the specified interaction class.

Exceptions thrown from this method will be entered into the federate's RTI log and
ignored.

EXCEPTIONS
RTI::InteractionClassHandle - The interaction class handle is not recognized or the
interaction class is not published by the federate.

RTI::FederateInternalError - An error internal to the federate has occurred; this
exception will result in an entry being made to the federate's RTI log.

SEE ALSO
FederateAmbassador::startUpdates, RTIambassador::publishInteractionClass



RTI 1.0 Programmer’s Guide

78

3.3 Object Management

Table 3-25:  Object Management Services

Section Service Title Service
Implemented

4.1 Request ID Yes
4.2 Register Object Yes
4.3 Update Attribute Values Yes
4.4 Discover Object † Yes
4.5 Reflect Attribute Values † Yes
4.6 Send Interaction Yes
4.7 Receive Interaction † Yes
4.8 Delete Object Yes
4.9 Remove Object † Yes
4.10 Change Attribute Transportation Type Yes
4.11 Change Attribute Order Type Yes
4.12 Change Interaction Transportation Type Yes
4.13 Change Interaction Order Type Yes
4.14 Request Attribute Value Update Yes
4.15 Provide Attribute Value Update† Yes
4.16 Retract Yes
4.17 Reflect Retraction † Yes



RTI 1.0 Programmer’s Guide

79

3.3.1 Request ID
NAME

requestID - obtain a range of unique IDs for use in registering objects with the
federation

HLA INTERFACE SPECIFICATION SERVICE
4 . 1  - Object Management (federate initiated)

SYNOPSIS
#include <RTI.hh>

void
RTIambassador::requestID (
  RTI::ObjectIDcount idCount
  RTI::ObjectID& firstID
  RTI::ObjectID& lastID
)
 throw (
   RTI::TooManyIDsRequested,
   RTI::IDsupplyExhausted,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

ARGUMENTS
   idCount   

number of IDs to reserve

   firstID    
the first ID in the range of reserved IDs

   lastID    
the last ID in the range of reserved IDs

DESCRIPTION
The federate invokes this method to obtain a set of unique object IDs that may be
used in subsequent calls to RTIambassador::registerObject.  These IDs are taken
from the set of unique IDs that is assigned to every federate in a federation
execution; thus object IDs are unique within the federate and within the federation
execution at a given time (although the same object ID may be used by different
federates at mutually exclusive times throughout a given federation execution.)  IDs
are not recycled upon the deletion of their associated object.

The number of unique IDs available to a federate is configurable via the
MAX_OBJECTS_PER_FEDERATE entry in the $RTI_CONFIG/RTI.rid file.

RETURN VALUES
Upon a non-exceptional completion, firstID and lastID define the endpoints of an
inclusive range of object IDs that may be used by the federate for the registration of



RTI 1.0 Programmer’s Guide

80

new federation objects.

WINDOWS NT NOTES
On Windows NT, the path of the RTI configuration file is %RTI_CONFIG%.rid.

EXCEPTIONS
RTI::TooManyIDsRequested - The request cannot be granted with a single
continuous range of object IDs; try breaking the request up into multiple smaller
requests.  (Not thrown in RTI 1.0.)

RTI::IDsupplyExhausted - The federate has exhausted its supply of unique object
IDs.

RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTIambassador::registerObject



RTI 1.0 Programmer’s Guide

81

3.3.2 Register Object
NAME

registerObject - associate an object class with an object ID to create a new object in
the federation execution

HLA INTERFACE SPECIFICATION SERVICE
4 . 2  - Object Management (federate initiated)

SYNOPSIS
void
RTIambassador::registerObject (
  RTI::ObjectClassHandle theClass
  RTI::ObjectID theObject
)
 throw (
   RTI::ObjectClassNotDefined,
   RTI::ObjectClassNotPublished,
   RTI::InvalidObjectID,
   RTI::ObjectAlreadyRegistered,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

ARGUMENTS
   theClass   

object class to associate with the specified object ID (this class must be
published by the federate.)

   theObject   
object ID to associate with the specified class (should have been previously
obtained via a call to RTIambassador::requestID.)

DESCRIPTION
This service associates the specified object class with the specified object ID,
effectively creating a new object within the federation. Ownership tokens for
attributes being published by the federate will be initially owned by the federate; any
other ownership tokens will be initially unowned (specifically, they are tracked by
the RTI internally in the process registering the object) and are available for
acquisition by any federate.  The initial transportation mechanism and update
ordering policy for a given attribute are set to the values defined in the FOM file
($RTI_CONFIG/[federation name].fed.) RTIambassador::registerObject does not
notify the federation of the existence of the newly created object; the object will not
be discovered by other federates until an attribute update notification is sent out.

RETURN VALUES
A non-exceptional return indicates that the object has been successfully registered
with RTI and the federate may begin generating updates for the attributes it
publishes.



RTI 1.0 Programmer’s Guide

82

WINDOWS NT NOTES
On Windows NT, the path of the FOM file is %RTI_CONFIG%federation].fed.

 =head1 EXCEPTIONS

RTI::ObjectClassNotDefined - The object class handle is not valid in the context of
the current federation execution.

RTI::ObjectClassNotPublished - The specified object class is not published by the
federate.

RTI::InvalidObjectID - The specified object ID has not been reserved for use by the
federate.

RTI::ObjectAlreadyRegistered - An object has already been registered with the
specified object ID.

RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTIambassador::requestID, RTIambassador::publishObjectClass,
RTIambassador::updateAttributeValues, RTIambassador::deleteObject,
RTIambassador::changeAttributeTransportType,
RTIambassador::changeAttributeOrderType, FederateAmbassador::discoverObject



RTI 1.0 Programmer’s Guide

83

3.3.3 Update Attribute Values
NAME

updateAttributeValues - notify the federation of a change in value of one or more
attributes of an object

HLA INTERFACE SPECIFICATION SERVICE
4 . 3  - Object Management (federate initiated)

SYNOPSIS
RTI::EventRetractionHandle
RTIambassador::updateAttributeValues (
  RTI::ObjectID theObject
  const RTI::AttributeHandleValuePairSet& theAttributes
  RTI::FederationTime theTime
  const RTI::UserSuppliedTag theTag
)
 throw (
   RTI::ObjectNotKnown,
   RTI::AttributeNotDefined,
   RTI::AttributeNotOwned,
   RTI::InvalidFederationTime,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

ARGUMENTS
   theObject   

object ID of the instance whose attributes are being updated.

   theAttributes   
set of handles of the attributes being updated and their associated values.
The caller is responsible for freeing the storage space associated with this
set and may do so at its leisure.

   theTime   
federation time at which the new attribute values should take effect.

   theTag    
string value that is passed to the invocations
FederateAmbassador::reflectAttributeValues on the remote federates; this
may contain a textual description of what caused the change in state or any
other data that is meaningful for a particular federation.  The caller is
responsible for freeing the storage associated with this string and may do so
at its leisure.

DESCRIPTION
This method notifies the other federates in the federation execution of a change in
the specified attribute values of the specified object. This may result in one or more
invocations of FederateAmbassador::reflectAttributeValues on one or more remote



RTI 1.0 Programmer’s Guide

84

federates (after any class promotion and attribute filtering necessary to meet a given
federate's subscription criteria is done.)

The transportation mechanism and ordering policy used for a given attribute are
defined by the federate's FED file ($RTI_CONFIG/[federation name].fed) or may
be specified dynamically on a per-instance basis using
RTIambassador::changeAttributeTransportType and
RTIambassador::changeAttributeOrderType (keep in mind that the attribute-specific
ordering policy is only considered if the federate is time regulating, otherwise all
attribute updates are sent receive-ordered.)  Attributes with different transportation
mechanisms and/or ordering policies may be grouped together in a single
RTIambassador::updateAttributeValues invocation; the object manager will send out
various subsets of the specified attributes in physically separate updates as
necessary.

The federate must hold the ownership tokens for any attributes it attempts to update
(and therefore must also be publishing the attributes.)

RETURN VALUE
The RTI::EventRetractionHandle returned may be used as the argument to
RTIambassador::retract to withdraw the update notification.

EXCEPTIONS
RTI::ObjectNotKnown - The specified object ID is not valid within the current
federation execution or is not known to the federate.

RTI::AttributeNotDefined - One or more of the specified attributes is not valid in the
context of the specified object (valid attributes are still sent out before this exception
is raised.)

RTI::AttributeNotOwned - The federate does not hold the ownership token for one
or more of the specified attributes (valid attributes are still sent out before this
exception is raised.)

RTI::InvalidFederationTime - The time value specified is not a legal time for a time-
stamp-ordered update to be posted by the federate, i.e. it is less than the federate's
logical time plus its lookahead. (Not thrown in 1.0.)

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.



RTI 1.0 Programmer’s Guide

85

SEE ALSO
FederateAmbassador::reflectAttributeValues, RTIambassador::publishObjectClass,
RTIambassador::queryAttributeOwnership,
RTIambassador::changeAttributeTransportType,
RTIambassador::changeAttributeOrderType, RTIambassador::registerObject,
FederateAmbassador::discoverObject, RTIambassador::turnRegulationOn,
RTI::AttributeHandleValuePairSet, RTIambassador::tick RTIambassador::retract



RTI 1.0 Programmer’s Guide

86

3.3.4 Discover Object +
NAME

discoverObject - inform the federate of the existence of an object in the federation

HLA INTERFACE SPECIFICATION SERVICE
4 . 4  - Object Management (RTI initiated)

SYNOPSIS
virtual
void
FederateAmbassador::discoverObject (
  RTI::ObjectID theObject
  RTI::ObjectClassHandle theObjectClass
  RTI::FederationTime theTime
  const RTI::UserSuppliedTag theTag
  RTI::EventRetractionHandle theHandle
)
 throw (
   RTI::CouldNotDiscover,
   RTI::ObjectClassNotKnown,
   RTI::InvalidFederationTime,
   RTI::FederateInternalError
 )

ARGUMENTS
   theObject   

object ID of the object being discovered.

   theObjectClass   
discovered class of the object (this may differ from its actual class -- see
below.)

   theTime   
time at which the object is discovered (not necessarily the time at which the
object was created.)

   theTag    
string value that was passed to the RTIambassador::updateAttributeValues
that triggered the object discovery. This may contain a textual description of
the reason for the attribute update, or any other data that is meaningful for a
particular federation.  The caller maintains ownership of the storage
associated with this string; the federate ambassador should make a copy if it
wishes to retain this information after the completion of the call.

   theHandle   
event handle that may later be used to retract the discovery of this object.

DESCRIPTION
This method is invoked to inform the federate of a newly discovered object that
meets the federate's subscription criteria.  This occurs upon the receipt of an
attribute update for an object that has not previously been discovered by the
federate; there is no notification of new objects that have been registered using



RTI 1.0 Programmer’s Guide

87

RTIambassador::registerObject but have not been updated. Discoveries always
immediately precede a FederateAmbassador::reflectAttributeValues for the
discovered object (no intervening RTIambassador::tick is required); an object is
discovered exactly when one or more of its attribute updates becomes eligible for
presentation to the federate (see RTIambassador::reflectAttributeValues and
RTIambassador::tick for a more thorough discussion of when this occurs.)

If the actual class of an object is a subclass of an object class subscribed by the
federate, the object is promoted to the subscribed class for discovery by the
federate.  For example, if a federate subscribes to class Foo but not its subclass
Bar, instances of class Bar will be discovered as Foo by the federate.

Only objects that have been discovered by a federate are eligible for updates via
invocations of FederateAmbassador::reflectAttributeValues.

RETURN VALUES
A non-exceptional return indicates that the federate understands the discovery
notification.

An exceptional return will cause an error message to be written to the federate's RTI
log file; the object will still be considered discovered and subject to future update
notifications.

EXCEPTIONS
RTI::CouldNotDiscover - The federate could not discover the specified object (it's
not particularly clear when this should be thrown.)

RTI::ObjectClassNotKnown - The objet class handle is not valid in the context of
the current federation execution or is not subscribed by the federate.

RTI::InvalidFederationTime - The federation time is not valid, i.e. a time-stamped
order update has been delivered to a time-constrained federation in the federate's
past.  (In 1.0 there's no way for the federate to tell whether the discovery is the
result of a time-stamp ordered update, so it's unclear when this exception should be
raised.)

RTI::FederateInternalError - An error internal to the federate has occurred.

SEE ALSO
RTIambassador::registerObject RTIambassador::subscribeObjectClass,
RTIambassador::updateAttributeValues,
FederateAmbassador::reflectAttributeValues, FederateAmbassador::reflectRetration,
FederateAmbassador::removeObject



RTI 1.0 Programmer’s Guide

88

3.3.5 Reflect Attribute Values +
NAME

reflectAttributeValues - inform the federate of a change in one or more attribute
values of a previously-discovered object in the federation

HLA INTERFACE SPECIFICATION SERVICE
4 . 5  - Object Management (RTI initiated)

SYNOPSIS
virtual
void
FederateAmbassador::reflectAttributeValues (
  RTI::ObjectID theObject
  const RTI::AttributeHandleValuePairSet& theAttributes
  RTI::FederationTime theTime
  const RTI::UserSuppliedTag theTag
  RTI::EventRetractionHandle theHandle
)
 throw (
   RTI::ObjectNotKnown,
   RTI::AttributeNotKnown,
   RTI::InvalidFederationTime,
   RTI::FederateInternalError
 )

ARGUMENTS
   theObject   

object whose attributes are being updated.

   theAttributes   
set of attributes being updated and their corresponding new values.  The
caller maintains ownership of the storage associated with this set; the
federate ambassador should make a copy if it wishes to retain this
information after the completion of the call.

   theTime   
time at which the updated values are effective.

   theTag    
string value that was passed to the invocation of
RTIambassador::updateAttributeValues that triggered this reflection.  This
may contain a textual description of the reason for the attribute update, or
any other data that is meaningful for a particular federation.  The caller
maintains ownership of the storage associated with this string; the federate
ambassador should make a copy if it wishes to retain this information after
the completion of the call.

   theHandle   
event handle that may later be used to retract the specified update.

DESCRIPTION
This callback is invoked to inform the federate that the given set of attributes have



RTI 1.0 Programmer’s Guide

89

changed values, effective at the specified time.  This occurs as a result of a call to
RTIambassador::updateAttributeValues made by a remote federate (a single update
may cause more than one reflection per federate, possibly at different physical and
logical times, if the attributes updated differ in transport mechanisms or ordering
policies.)

If the federate is time-constrained, attribute updates designated by the sender as
time-stamp-ordered are not presented to the federate until it has requested to
advance its logical time to a time equal to or beyond the time-stamp of the update
and it can be guaranteed that no time-stamp-ordered updates or interactions with a
lower time-stamp will be received, i.e. the federation's lower-bound time stamp is
greater than or equal to the update's time-stamp.  Time-stamp-ordered updates and
interactions are presented to the federate in strictly non-decreasing time order
(although delivery of messages with the same time-stamp occurs in non-
deterministic order.)

If the federate is not time-constrained, updates and interactions are presented to the
federate in the order in which they are received, regardless of their time-stamp and
ordering policies.

RETURN VALUES
A non-exceptional return indicates that the federate understands the attribute update
notification.

An exceptional return will cause an error message to be written to the federate's RTI
log file; the attribute values are still considered to have been reflected.

EXCEPTIONS
RTI::ObjectNotKnown - The object ID is has not previously been discovered by the
federate.

RTI::AttributeNotKnown - One or more attribute handles are not valid in the context
of the current federation execution or the attributes are not subscribed by the
federate.

RTI::InvalidFederationTime - The federation time is not valid, i.e. a time-stamped-
ordered update has been delivered to a time-constrained federation in the federate's
past.  (In 1.0 there's no way for the federate to tell whether the reflection is the
result of a time-stamp-ordered update, so it's unclear when this exception should be
raised.)

RTI::FederateInternalError - An error internal to the federate has occurred.

SEE ALSO
RTIambassador::updateAttributeValues, RTIambassador::setTimeConstrained,
RTIambassador::subscribeObjectClass, FederateAmbassador::discoverObject,
RTI::AttributeHandleValuePairSet, FederateAmbassador::reflectRetration,
RTIambassador::timeAdvanceRequest, FederateAmbassador::receiveInteraction



RTI 1.0 Programmer’s Guide

90

3.3.6 Send Interaction
NAME

sendInteraction - notify the federation of an action taken by an object, possibly
directed towards another object

HLA INTERFACE SPECIFICATION SERVICE
4 . 6  - Object Management (federate initiated)

SYNOPSIS
RTI::EventRetractionHandle
RTIambassador::sendInteraction (
  RTI::InteractionClassHandle theInteraction
  const RTI::ParameterHandleValuePairSet& theParameters
  RTI::FederationTime theTime
  const RTI::UserSuppliedTag theTag
)
 throw (
   RTI::InteractionClassNotDefined,
   RTI::InteractionClassNotPublished,
   RTI::InteractionParameterNotDefined,
   RTI::InvalidFederationTime,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

ARGUMENTS
   theInteraction    

class of interaction to send to the federation (must be a class published by
the federate.)

   theParameters   
set handles of the parameters being updated and their associated values.
The caller is responsible for freeing the storage space associated with this
set and may do so at its leisure.

   theTime   
federation time at which the interaction occurs.

   theTag    
string value that is passed to the invocations
FederateAmbassador::receiveInteraction on the remote federates; this make
contain a textual description of the interaction, or any other data that is
meaningful for a particular federation.  The caller is responsible for freeing
the storage associated with this string and may do so at its leisure.

DESCRIPTION
This service allows the federate to notify the federation of an action taken by some
object in the federation or any other change in federate state that cannot be
communicated via attribute value updates.  This may result in a single invocation of



RTI 1.0 Programmer’s Guide

91

FederateAmbassador::receiveInteraction on one or more remote federates (after any
class promotion and parameter filtering necessary to meet a given federate's
subscription criteria is done.)

The transportation mechanism and ordering policy used for the interaction are
defined by the federate's FED file ($RTI_CONFIG/[federation name].fed) or may
be specified dynamically using RTIambassador::changeInteractionTransportType
and RTIambassador::changeInteractionOrderType (keep in mind that the interaction
class-specific ordering policy is only considered if the federate is time regulating,
otherwise all interactions are sent receive-ordered.)

RETURN VALUES
The RTI::EventRetractionHandle returned may be used as the argument to
RTIambassador::retract to withdraw the interaction.

EXCEPTIONS
RTI::InteractionClassNotDefined - The specified interaction class handle is not valid
in the context of the current federation execution.

RTI::InteractionClassNotPublished - The specified interaction class is not currently
published by the federate.

RTI::InteractionParameterNotDefined - One or more of the specified interaction
parameter handles are not valid in the context of the specified interaction class.

RTI::InvalidFederationTime - The time value specified is not a legal time for a time-
stamp-ordered update to be posted by the federate, i.e. it is less than the federate's
logical time plus its lookahead.  (Not thrown in 1.0.)

RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
FederateAmbassador::receiveInteraction, RTIambassador::publishInteractionClass,
RTIambassador::changeInteractionTransportType,
RTIambassador::changeInteractionOrderType, RTIambassador::turnRegulationOn,
RTI::ParameterHandleValuePairSet, RTIambassador::tick RTIambassador::retract



RTI 1.0 Programmer’s Guide

92

3.3.7 Receive Interaction +
NAME

receiveInteraction - inform the federate of an interaction generated by another
federate in the federation execution

HLA INTERFACE SPECIFICATION SERVICE
4 . 7  - Object Management (RTI initiated)

SYNOPSIS
virtual
void
FederateAmbassador::receiveInteraction (
  RTI::InteractionClassHandle       theInteraction
  const RTI::ParameterHandleValuePairSet& theParameters
  RTI::FederationTime theTime
  const RTI::UserSuppliedTag theTag
  RTI::EventRetractionHandle theHandle
)
 throw (
   RTI::InteractionClassNotKnown,
   RTI::InteractionParameterNotKnown,
   RTI::InvalidFederationTime,
   RTI::FederateInternalError
 )

ARGUMENTS
   theInteraction    

class of the interaction (must be a class subscribed by the federate or a
subclass of a subscribed class.)

   theParameters   
set of parameters for this interaction and their associated values.  The caller
maintains ownership of the storage associated with this set; the federate
ambassador should make a copy if it wishes to retain this information after
the completion of the call.

   theTime   
time at which the interaction occurs.

   theTag    
string value that was passed to the invocation of
RTIambassador::sendInteraction that triggered this reflection. This may
contain a textual description of the interaction, or any other data that is
meaningful for a particular federation.  The caller maintains ownership of
the storage associated with this string; the federate ambassador should make
a copy if it wishes to retain this information after the completion of the call.

   theHandle   
event handle that may later be used to retract the specified interaction.

DESCRIPTION
This callback is invoked to inform the federate of an interaction generated by



RTI 1.0 Programmer’s Guide

93

another federate in the federation execution via RTIambassador::sendInteraction.
Federates are only notified of interactions that meet their subscription criteria, as
defined by RTIambassador::(un)subscribeInteractionClass.

If the federate is time-constrained, interactions designated by the sender as time-
stamp-ordered are not presented to the federate until it has requested to advance its
logical time past the time-stamp of the interaction and it can be guaranteed that no
time-stamp-ordered updates or interactions with a lower time-stamp will be
received, i.e. the federation's lower-bound time stamp is greater than or equal to the
update's time-stamp.  Time-stamp-ordered updates and interactions are presented to
the federate in strictly non-decreasing time order (although delivery of messages
with the same time-stamp occurs in non-deterministic order.)

If the federate is not time-constrained, updates and interactions are presented to the
federate in the order in which they are received, regardless of their time-stamp and
ordering policies.

RETURN VALUES
A non-exceptional return indicates that the federate understands the interaction
notification.

An exceptional return will cause an entry to be made in the federate's RTI log file;
the interaction is still considered to have been delivered to the federate.

EXCEPTIONS
RTI::InteractionClassNotKnown - The specified interaction class handle is not valid
in the context of the current federation execution or is not subscribed by the
federate.

RTI::InteractionParameterNotKnown - One or more of the specified parameters
handles is not valid in the context of the specified interaction class.

RTI::InvalidFederationTime - The federation time is not valid, i.e. a time-stamped-
ordered interaction has been delivered to a time-constrained federation in the
federate's past.  (In 1.0 there's no way for the federate to tell whether the receipt is
the result of a time-stamp-ordered interaction, so it's unclear when this exception
should be raised.)

RTI::FederateInternalError - An error internal to the federate has occurred.

SEE ALSO
RTIambassador::sendInteraction, RTIambasador::setTimeConstrained,
RTIambassador::subscribeInteractionClass,
RTIambassador::ParameterHandleValuePairSet,
FederateAmbassador::reflectRetraction, RTIambassador::timeAdvanceRequest,
FederateAmbassador::reflectAttributeValues



RTI 1.0 Programmer’s Guide

94

3.3.8 Delete Object
NAME

deleteObject - remove an object from the federation execution

HLA INTERFACE SPECIFICATION SERVICE
4 . 8  - Object Management (federate initiated)

SYNOPSIS
RTI::EventRetractionHandle
RTIambassador::deleteObject (
  RTI::ObjectID objectID
  RTI::FederationTime theTime
  const RTI::UserSuppliedTag theTag
)
 throw (
   RTI::ObjectNotKnown,
   RTI::DeletePrivilegeNotHeld,
   RTI::InvalidFederationTime,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

ARGUMENTS
    objectID    

object to be deleted from the federation execution.

   theTime   
time at which the object deletion is to become effective.

   theTag    
string value that will be passed to resulting invocations of
FederateAmbassador::removeObject.  This may contain a description of the
reason for the object deletion, or any other information that is meaningful
for a particular federation.  The caller is responsible for freeing the storage
space associated with this string and may do so at its leisure.

DESCRIPTION
The federate invokes this service when it wishes to remove an object from the
federation execution.  To delete an object, a federate must hold the ownership token
of the object's special "privilege to delete" attribute (referenced by
PRIVILEGE_TO_DELETE_HANDLE.)  This token is initially held by the federate
that registered the object with the federation execution.

If the federate is time regulating and any of the instance's attributes are being sent
time-stamp-ordered by the federate, the object deletion message will be designated
for time-stamp-ordered delivery, otherwise it will be sent receive-ordered.

A successful invocation of this service will trigger
FederateAmbassador::removeObject callbacks on federates that have discovered the



RTI 1.0 Programmer’s Guide

95

specified object.

RETURN VALUES
A non-exceptional return indicates that an object-deletion message has been sent to
the other federates in the federation execution.

The RTI::EventRetractionHandle returned by this function can be used to reinstate
the object via the RTIambassador::retract service.

EXCEPTIONS
RTI::ObjectNotKnown - The object ID is not valid in the context of the current
federation execution or the object is not known to the federate.

RTI::DeletePrivilegeNotHeld - The federate does not hold the ownership token of
the special "privilege to delete" attribute.

RTI::InvalidFederationTime - The The time value specified is not a legal time for a
time-stamp-ordered update to be posted by the federate, i.e. it is less than the
federate's logical time plus its lookahead. (Not thrown in 1.0.)

RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
FederateAmbassador::removeObject, RTIambassador::registerObject,
RTIambassador::retract RTIambassador::queryAttributeOwnership



RTI 1.0 Programmer’s Guide

96

3.3.9 Remove Object +
NAME

removeObject - informs the federate that a specified object has been removed from
the federation execution or no longer meets the interest criteria of the federate

HLA INTERFACE SPECIFICATION SERVICE
4 . 9  - Object Management (RTI initiated)

SYNOPSIS
enum RTI::ObjectRemovalReason      OUT_OF_REGION = 1,
OBJECT_DELETED,     NO_LONGER_SUBSCRIBED ;

virtual
void
FederateAmbassador::removeObject (
  RTI::ObjectID theObject
  RTI::ObjectRemovalReason theReason
  RTI::FederationTime theTime
  const RTI:UserSuppliedTag theTag
  RTI::EventRetractionHandle theHandle
)
 throw (
   RTI::ObjectNotKnown,
   RTI::InvalidFederationTime,
   RTI::FederateInternalError
 )

A variation is invoked when the object is being removed because its class has been
unsubscribed or it is no longer a constituent of any federate-subscribed region:

virtual
void
FederateAmbassador::removeObject (
  RTI::ObjectID theObject
  RTI::ObjectRemovalReason theReason
)
 throw (
   RTI::ObjectNotKnown,
   RTI::InvalidFederationTime,
   RTI::FederateInternalError
 )

ARGUMENTS
   theObject   

object ID of the object being removed (must be an object that has previously
been discovered by the federate.)

   theReason    
value indicating the reason why the object is being removed from the
federate.

   theTime   



RTI 1.0 Programmer’s Guide

97

time at which the removal is effective.

   theTag    
string value that was passed to the invocation of
RTIambassador::deleteObject that triggered this notification. This may
contain a textual description of the reason for deletion, or any other data that
is meaningful for a particular federation.  The caller maintains ownership of
the storage associated with this string; the federate ambassador should make
a copy if it wishes to retain this information after the completion of the call.

   theHandle   
event handle that may later be used to retract the specified removal.

DESCRIPTION
This callback notifies the federate that the specified object has been removed from
the set of objects "known" by the federate; this can occur when an object is deleted
from the federation execution, the object's class is unsubscribed by the federate, or
the object no longer belongs to any subscribed region of the federate.

The federate will receive no further attribute reflections for objects that have been
deleted (unless they are reinstated with a subsequent
FederateAmbassador::discoverObject.)  Any ownership tokens for attributes of this
object held by the federate have been destroyed, transferred to another federate, or
become unowned.

If the federate is time-constrained and the object removal is due to a time-stamp-
ordered message from another federate (i.e. a deletion or an update that causes the
the object to no longer be included in any federate-subscribed regions), the removal
notification will be scheduled for presentation to the federate in time-stamped-order
(see RTIambassador::reflectAttributeValues for a discussion of what this means),
otherwise it will be eligible for immediate presentation (i.e. receive-ordered.)

RETURN VALUES
A non-exceptional return indicates that the federate understands the removal
notification.

An exceptional return will cause an entry to be made in the federate's RTI log; the
object will still be considered deleted from the federate.

EXCEPTIONS
RTI::ObjectNotKnown - The object ID does not correspond to an object previously
discovered by the federate.

RTI::InvalidFederationTime - The federation time is not valid, i.e. a time-stamped-
ordered deletion notification has been delivered to a time-constrained federation in
the federate's past.  (In 1.0 there's no way for the federate to tell whether the
reflection is the result of a time-stamp-ordered update, so it's unclear when this
exception should be raised.)

RTI::FederateInternalError - An error internal to the federate has occurred.

SEE ALSO
RTIambassador::deleteObject, FederateAmbassador::discoverObject,
RTIambassador::unsubscribeObjectClassAttribute,



RTI 1.0 Programmer’s Guide

98

FederateAmbassador::reflectRetraction



RTI 1.0 Programmer’s Guide

99

3.3.10 Change Attribute Transportation Type
NAME

changeAttributeTransportType - change the transportation mechanism used by the
federate for updates of a specified set of attributes of a specified object

HLA INTERFACE SPECIFICATION SERVICE
4 .10  - Object Management (federate initiated)

SYNOPSIS
enum RTI::TransportType      RELIABLE = 1,     BEST_EFFORT ;

void
RTIambassador::changeAttributeTransportType (
  RTI::ObjectID theObject
  const RTI::AttributeHandleSet& theAttributes
  RTI::TransportType theType
)
 throw (
   RTI::ObjectNotKnown,
   RTI::AttributeNotDefined,
   RTI::AttributeNotOwned,
   RTI::InvalidTransportType,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

ARGUMENTS
   theObject   

object whose attributes the federate wishes to change the transportation
mechanism of.

   theAttributes   
set of attributes that the federate wishes to change the transportation
mechanism of.  The caller is responsible for freeing the storage associated
with this parameter and may do so at its leisure.

   theType   
enumerated value specifying the new transportation mechanism to be used
for the updates of the specified attributes.

DESCRIPTION
The federate can utilize this service to dynamically specify the mechanism by which
updates of the given set of object-attributes are delivered (the default value is
determined by the federate initialization file, $RTI_CONFIG/[federation
name].fed.)  This change only affects the local federate and only affects the
attributes of the specified class instance (not the object class itself.)  The federate
need not own a given attribute in order to change its transport mechanism.

The following transport options are available:



RTI 1.0 Programmer’s Guide

100

    RELIABLE    
are guaranteed to be delivered to each of the federates currently joined in the
federation.  In 1.0 this is implemented using TCP sockets, with the
federation executive serving as an "exploder" for federation messages.  This
means that reliable updates are high-latency, may cause the federate to block
while sending, and have limited bandwidth available.  However, it is
necessary to use this transport for essential updates (e.g. missile
detonations, collision notifications.)

    BEST_EFFORT    
might not be delivered to one or more federates currently involved in
federation execution.  In 1.0 this is implemented using multicast datagrams.
Best effort updates are low-latency and low-overhead and are therefore the
preferred transport mechanism for non-essential types of updates (e.g.
routine position notifications.)

RETURN VALUES
A non-exceptional exit indicates that future updates for the specified object-
attributes will use the specified transport mechanism.

EXCEPTIONS
RTI::ObjectNotKnown - The object handle is not valid within the context of the
federation execution or the object is not known by the federate.

RTI::AttributeNotDefined - One or more of the attribute handles is not valid within
the context of the specified object.

RTI::AttributeNotOwned - Not thrown; the federate need not own a given attribute
to change its transport type.

RTI::InvalidTransportType - The specified transport type was not a recognized
enumerated value.

RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTIambassador::changeAttributeOrderType,
RTIambassador::updateAttributeValues,
RTIambassador::changeInteractionTransportType, RTI::AttributeHandleSet



RTI 1.0 Programmer’s Guide

101



RTI 1.0 Programmer’s Guide

102

3.3.11 Change Attribute Order Type
NAME

changeAttributeOrderType - change the ordering policy used by the federate for
updates of a specified set of attributes of a specified object

HLA INTERFACE SPECIFICATION SERVICE
4 .11  - Object Management (federate initiated)

SYNOPSIS
enum RTI::OrderType      RECEIVE = 1,     TIMESTAMP ;

void
RTIambassador::changeAttributeOrderType (
  RTI::ObjectID theObject
  const RTI::AttributeHandleSet& theAttributes
  RTI::OrderType theType
)
 throw (
   RTI::ObjectNotKnown,
   RTI::AttributeNotDefined,
   RTI::AttributeNotOwned,
   RTI::InvalidOrderType,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

ARGUMENTS
   theObject   

object whose attributes the federate wishes to change the ordering policy of.

   theAttributes   
set of attributes that the federate wishes to change the ordering policy of.
The caller is responsible for freeing the storage associated with this
parameter and may do so at its leisure.

   theType   
enumerated value specifying the new ordering policy to be used for updates
of the specified attributes.

DESCRIPTION
The federate can utilize this service to dynamically specify the ordering policy by
which updates of the given set of object-attributes by the local federate are delivered
(the default value is determined by the federate initialization file,
$RTI_CONFIG/[federation name].fed.)  This change only affects the local federate
and only affects the attributes of the specified class instance (not the object class
itself.)  The federate need not own a given attribute in order to change its ordering
policy.

Note that if the federate is not time regulating, all updates will be sent as receive-



RTI 1.0 Programmer’s Guide

103

order, regardless of the attributes' ordering policies.

The following ordering policies are available:

    RECEIVE    
receipt of the update by a remote federate's transportation manager, it is
immediately placed into its event queue for processing by
RTIambassador::tick, regardless of the update's time-stamp. This policy
minimizes overhead, but out-of-order delivery is unacceptable in some
situations (of course, the federate may choose to do its own ordering based,
e.g., on time information encoded in the user-specified tag portion of the
update.)

    TIMESTAMP    
a given remote federate is time constrained, the update is placed in its time-
stamp-ordered message queue for delivery at the appropriate time, as
determined by the update time-stamp.  Federates that are not time
constrained will treat the message as if it were receive-order.  This policy
incurs more overhead but will be necessary for certain types of simulations.

RETURN VALUES
A non-exceptional return indicates that future updates of the specified object-
attributes will use the specified ordering policy.

EXCEPTIONS
RTI::ObjectNotKnown - The object handle is not valid within the context of the
federation execution or the object is not known by the federate.

RTI::AttributeNotDefined - One or more of the attribute handles is not valid within
the context of the specified object.

RTI::AttributeNotOwned - Not thrown; the federate need not own a given attribute
to change its ordering policy.

RTI::InvalidOrderType - The specified ordering policy was not a recognized
enumerated value.

RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO



RTI 1.0 Programmer’s Guide

104

RTIambassador::changeAttributeTransportType,
RTIambassador::updateAttributeValues, RTIambassador::tick,
RTIambassador::turnRegulationOn, RTIambassador::setTimeConstrained,
RTI::AttributeHandleSet



RTI 1.0 Programmer’s Guide

105

3.3.12 Change Interaction Transportation Type
NAME

changeInteractionTransportType - change the transportation mechanism used by the
federate for interactions of a specified class

HLA INTERFACE SPECIFICATION SERVICE
4 .12  - Object Management (federate initiated)

SYNOPSIS
enum RTI::TransportType      RELIABLE = 1,     BEST_EFFORT ;

void
RTIambassador::changeInteractionTransportType (
  RTI::InteractionClassHandle theClass
  RTI::TransportType theType
)
 throw (
   RTI::InteractionClassNotDefined,
   RTI::InteractionClassNotPublished,
   RTI::InvalidTransportType,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

ARGUMENTS
   theClass   

class of interactions that the federate wishes to change the transportation
mechanism of.

   theType   
enumerated value specifying the new transportation mechanism to be used
for interactions of the specified class.

DESCRIPTION
The federate can utilize this service to dynamically specify the mechanism by which
instances of a given interactions class are delivered (the default value is determined
by the federate initialization file, $RTI_CONFIG/[federation name].fed.)  This
change only affects the local federate and only affects the specified interaction class
(not subclasses of the interaction class.)  The federate must be currently publishing
an interaction class in order to change its transport mechanism.

The following transport options are available:

    RELIABLE    
are guaranteed to be delivered to each of the federates currently joined in the
federation.  In 1.0 this is implemented using TCP sockets, with the
federation executive serving as an "exploder" for federation messages.  This
means that reliable interactions are high-latency, may cause the federate to
block while sending, and have limited bandwidth available.  However, it is



RTI 1.0 Programmer’s Guide

106

necessary to use this transport for essential interactions (e.g. missile
detonations, collision notifications.)

    BEST_EFFORT    
might not be delivered to one or more federates currently involved in
federation execution.  In 1.0 this is implemented using multicast datagrams.
Best effort interactions are low-latency and low-overhead and are therefore
the preferred transport mechanism for non-essential types of interactions.

RETURN VALUES
A non-exceptional return indicates that future interactions of the specified class will
be sent using the specified transportation mechanism.

EXCEPTIONS
RTI::InteractionClassNotDefined - The interaction class handle is not valid within
the context of the current federation execution.

RTI::InteractionClassNotPublished - The federate is not currently publishing the
given interaction class.

RTI::InvalidTransportType - The specified transport type was not a recognized
enumerated value.

RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTIambassador::changeInteractionOrderType, RTIambassador::sendInteraction,
RTIambassador::changeAttributeTransportType,
RTIambassador::publishInteractionClass



RTI 1.0 Programmer’s Guide

107

3.3.13 Change Interaction Order Type
NAME

changeInteractionOrderType - change the ordering policy used by the federate for
interactions of a specified class

HLA INTERFACE SPECIFICATION SERVICE
4 .13  - Object Management (federate initiated)

SYNOPSIS
enum RTI::OrderType      RECEIVE = 1,     TIMESTAMP ;

void
RTIambassador::changeInteractionOrderType (
  RTI::InteractionClassHandle theClass
  RTI::OrderType theType
)
 throw (
   RTI::InteractionClassNotDefined,
   RTI::InteractionClassNotPublished,
   RTI::InvalidOrderType,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

ARGUMENTS
   theClass   

class of interactions that the federate wishes to change the ordering policy
of.

   theType   
enumerate value specifying the new ordering policy to be used for instances
of the specified interaction class.

DESCRIPTION
The federate can utilize this service to dynamically specify the ordering policy by
which instances of the given interaction class are delivered (the default value is
determined by the federate initialization file, $RTI_CONFIG/[federation
name].fed.)  This change only affects the local federate and only affects the
specified interaction class (not subclasses of the interaction class.)  The federate
must be currently publishing an interaction class in order to change its ordering
policy.

Note that if the federate is not time regulating, all interactions will be sent as
receive-order, regardless of the interactions' stated ordering policies.

The following ordering policies are available:

    RECEIVE    
receipt of the interaction by a remote federate's transportation manager, it is



RTI 1.0 Programmer’s Guide

108

immediately placed into its event queue for processing by
RTIambassador::tick, regardless of the interaction's time-stamp.

    TIMESTAMP    
a given remote federate is time constrained, the interaction is placed in its
time-stamp-ordered message queue for delivery at the appropriate time, as
determined by the update time-stamp.  Federates that are not time
constrained will treat the interaction as if it were receive-order.

RETURN VALUES
A non-exceptional return indicates that future interactions of the specified class will
be sent using the specified ordering policy.

EXCEPTIONS
RTI::InteractionClassNotDefined - The interaction class handle is not valid within
the context of the current federation execution.

RTI::InteractionClassNotPublished - The federate is not currently publishing the
given interaction class.

RTI::InvalidOrderType - The specified ordering policy was not a recognized
enumerated value.

RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTIambassador::changeInteractionTransportType,
RTIambassador::updateInteractionValues, RTI::InteractionHandleSet



RTI 1.0 Programmer’s Guide

109

3.3.14 Request Attribute Value Update
NAME

requestObjectAttributeValueUpdate, requestClassAttributeValueUpdate - stimulate
the generation of attribute updates for a given object or a given class of objects

HLA INTERFACE SPECIFICATION SERVICE
4 .14  - Object Management (federate initiated)

SYNOPSIS
void
RTIambassador::requestObjectAttributeValueUpdate (
  RTI::ObjectID theObject
  const RTI::AttributeHandleSet& theAttributes
)
 throw (
   RTI::AttributeNotDefined,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

A second method can be used to stimulate updates for all instances of a given object
class:

void
RTIambassador::requestClassAttributeValueUpdate (
  RTI::ObjectClassHandle theClass
  const RTI::AttributeHandleSet& theAttributes
)
 throw (
   RTI::ObjectClassNotDefined,
   RTI::AttributeNotDefined,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

ARGUMENTS
   theObject   

object whose attributes are being requested.

   theClass   
object class whose attributes are being requested.

   theAttributes   
set of attributes of the given object or class for which updates are requested.
The caller is responsible for freeing the storage space associated with this
set and may do so at its leisure.



RTI 1.0 Programmer’s Guide

110

DESCRIPTION
This method solicits an update of the specified object-attributes from the federation.
This will result in invocations of
FederateAmbassador::provideAttributeValueUpdate on the federate(s) holding the
ownership tokens of the specified object-attributes.  Upon receipt of an attribute
value update request, the remote federate should issue an update of the requested
attributes.

If the request is for a class of objects, then updates of subclasses of the class are
requested as well.

As a given object is not discovered by a federate until the receipt of an attribute
update for that object, this service proves to be useful way for late-arriving
federates to discover objects already existing in the federation (particularly if
updates for these objects are ordinarily made infrequently.)

One or more updates can result from a single attribute update request (even for a
single object instance), as different subsets of the requested attributes may be
owned by different federates.  There is no guarantee that updates for all the
requested attributes will be received.  If an attribute's ownership token no longer
exists or is not held by any federate (or if the federate holding the token ignores the
attribute update request!), the requesting federate will simply not receive an attribute
update for the attribute; no negative acknowledgement is provided.

RETURN VALUES
A non-exceptional return indicates that the specified object-attribute updates have
been solicited from the federation; the federate will be notified of any results via its
FederateAmbassador::reflectAttributeValues callback (this does not occur
synchronously with respect to the request method, but will occur at a later time in
response to an invocation of the RTIambassador::tick.)

EXCEPTIONS
RTI::AttributeNotDefined - One or more of the attribute handles is not valid within
the context of the specified object or object class.

RTI::ObjectClassNotDefined - The specified object class handle is not valid within
the context of the current federation execution.

RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.



RTI 1.0 Programmer’s Guide

111

SEE ALSO
FederateAmbassador::provideAttributeValueUpdate,
RTIambassador::discoverObject, FederateAmbassador::reflectAttributeValues



RTI 1.0 Programmer’s Guide

112

3.3.15 Provide Attribute Value Update +
NAME

provideAttributeValueUpdate - callback invoked by RTI to solicit an attribute-value
update from the federate

HLA INTERFACE SPECIFICATION SERVICE
4 .15  - Object Management (RTI initiated)

SYNOPSIS
virtual
void
FederateAmbassador::provideAttributeValueUpdate (
  RTI::ObjectID theObject
  const RTI::AttributeHandleSet& theAttributes
)
 throw (
   RTI::ObjectNotKnown,
   RTI::AttributeNotKnown,
   RTI::FederateInternalError
 )

ARGUMENTS
   theObject   

object ID of the object for whom an attribute-value update is requested.

   theAttributes   
set of attributes for which an update is requested; these must be attributes
whose ownership tokens are held by the federate.  The caller maintains
ownership of the storage associated with this set; the federate ambassador
should make a copy if it wishes to retain this information after the
completion of the call.

DESCRIPTION
This callback is invoked to notify the federate that an attribute-update has been
requested by another federate via its
RTIambassador::requestClass,ObjectAttributeValueUpdate service.  (Note that one
attribute-value request can trigger multiple provide attribute-value update callbacks
on different federates.)

Upon receipt of such a request, the federate should update the specified object-
attributes (using RTIambassador::updateAttributeValues) as soon as possible.
(Keep in mind that this may not be done from inside the
FederateAmbassador::provideAttributeValueUpdate callback as this would result in
a concurrent access violation.)

RETURN VALUES
A non-exceptional return indicates that the federate understands the attribute value
update request and intends to update the specified object-attributes.

An exceptional return will cause an entry to be made in the federate's RTI log file;
the federate is still responsible for updating the requested attributes.



RTI 1.0 Programmer’s Guide

113

EXCEPTIONS
RTI::ObjectNotKnown - The object ID is not valid in the context of the current
federation execution or the object is not known by the federate.

RTI::AttributeNotKnown - One or more of the attribute handles is not valid in the
context of the specified object or the federate does not hold the attribute's
ownership token.

RTI::FederateInternalError - An error internal to the federate has occurred.

SEE ALSO
RTIambassador::requestObjectAttributeValueUpdate,
RTIambassador::updateAttributeValues



RTI 1.0 Programmer’s Guide

114

3.3.16 Retract
NAME

retract - cancel an update, interaction, or deletion previously scheduled by the
federate

HLA INTERFACE SPECIFICATION SERVICE
4 .16  - Object Management (federate initiated)

SYNOPSIS
void
RTIambassador::retract (
  RTI::EventRetractionHandle theHandle
)
 throw (
   RTI::InvalidRetractionHandle,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

ARGUMENTS
   theHandle   

event-retraction handle (as obtained from
RTIambassador::updateAttributeValues, sendInteraction, deleteObject) of
the event to unschedule.

DESCRIPTION
The federate can utilize this service to withdraw an update, interaction, or deletion it
has previously scheduled (or, in 1.0, has been scheduled by another federate.)  A
successful invocation will result in the issuance of an event-retraction message to
every federate in the federation execution.  If the specified event is currently queued
for delivery to a given remote federate, it is removed from its queue.  If the
specified event has been recently delivered to the federate (1.0 remembers the last
50,000 events delivered), the federate's FederateAmbassador::reflectRetraction
callback is invoked and the federate is responsible for rolling back its state as
appropriate.

While the RTI event retraction services don't do very much in and of themselves,
they provide a cornerstone upon which optimistic simulations can be built using
such techniques as "anti-messages."

RETURN VALUES
A non-exceptional return indicates that the other federates in the federation
execution have been advised to cancel the event specified by the retraction handle.

EXCEPTIONS
RTI::InvalidRetractionHandle - The event-retraction handle does not correspond to
an event previously scheduled by the federate.  (Not thrown in 1.0.)

RTI::FederateNotExecutionMember - The RTI ambassador is not currently



RTI 1.0 Programmer’s Guide

115

associated with a federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
FederateAmbassador::reflectRetraction, IRTIambassador::updateAttributeValues,
RTIambassaador::sendInteraction, RTIambassador::deleteObject



RTI 1.0 Programmer’s Guide

116

3.3.17 Reflect Retraction +
NAME

reflectRetraction - inform the federate that a previously-delivered attribute-value
update, interaction, or object deletion notification has been cancelled

HLA INTERFACE SPECIFICATION SERVICE
4 .17  - Object Management (RTI initiated)

SYNOPSIS
virtual
void
FederateAmbassador::reflectRetraction (
  RTI::EventRetractionHandle theHandle
)
 throw (
   RTI::EventNotKnown,
   RTI::FederateInternalError
 )

ARGUMENTS
   theHandle   

event retraction handle of the event to retract (should correspond to an
event-retraction handle previously passed to
FederateAmbassador::discoverObject,reflectAttributeValues,receiveInteracti
on,removeObject.)

DESCRIPTION
This callback is invoked when the federate's time manager receives an event
retraction request for an event that has already been delivered to the federate.  The
retraction request is the result of an RTIambassador::retract invocation by another
federate (in 1.0, not necessarily the federate issuing the event.)  The federate is
responsible for rolling back its state as is necessary to accommodate the
cancellation.

The event-retraction facilities in 1.0 are very open-ended, allowing a variety of
optimistic simulation techniques such as "anti-messages" to be built on top of them.

RETURN VALUES
A non-exceptional return indicates that the federate recognizes the event retraction
handle and will take the necessary steps to roll-back its federate state.

An exceptional return will cause an entry in the federate's RTI log file; the event is
still assumed to have been successfully retracted.

EXCEPTIONS
RTI::EventNotKnown - The specified event retraction handle does not correspond
to an event that has previously been delivered to the federation.

RTI::FederateInternalError - An error internal to the federate has occurred.

SEE ALSO
RTIambassador::retract, FederateAmbassador::discoverObject,



RTI 1.0 Programmer’s Guide

117

FederateAmbassador::reflectAttributeValues,
FederateAmbassador::receiveInteraction, FederateAmbassador::removeObject



RTI 1.0 Programmer’s Guide

118

3.4 Ownership Management

Table 3-26: Ownership Management Services

Section Service Title Service Implemented

5.1 Request Attribute Ownership Divestiture Yes
5.2 Request Attribute Ownership Assumption † Yes
5.3 Attribute Ownership Divestiture Notification † Yes
5.4 Attribute Ownership Acquisition Notification † Yes
5.5 Request Attribute Ownership Acquisition Yes
5.6 Request Attribute Ownership Release † Yes
5.7 Query Attribute Ownership Yes



RTI 1.0 Programmer’s Guide

119

3.4.1 Request Attribute Ownership Divestiture
NAME

requestAttributeOwnershipDivestiture - inform the RTI that the federate wishes to
relinquish ownership of a specified set of object attributes and solicit bids to assume
ownership of said attributes

HLA INTERFACE SPECIFICATION SERVICE
5 . 1  - Ownership Management (federate initiated)

SYNOPSIS
#include <RTI.hh>

enum RTI::OwnershipDivestitureCondition      NEGOTIATED = 1,
UNCONDITIONAL ;

void
requestAttributeOwnershipDivestiture (
  RTI::ObjectID theObject
  const RTI::AttributeHandleSet& theAttributes
  RTI::OwnershipDivestitureCondition theCondition
  const RTI::UserSuppliedTag theTag
)
 throw (
   RTI::ObjectNotKnown,
   RTI::AttributeNotDefined,
   RTI::AttributeNotOwned,
   RTI::InvalidDivestitureCondition,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

A variation allows the divesting federate to designate which federates may submit
bids for attribute ownership:

void
requestAttributeOwnershipDivestiture (
  RTI::ObjectID theObject
  const RTI::AttributeHandleSet& theAttributes
  RTI::OwnershipDivestitureCondition theCondition
  const RTI::UserSuppliedTag theTag
  const RTI::FederateHandleSet& theCandidates
)
 throw (
   RTI::ObjectNotKnown,
   RTI::AttributeNotDefined,
   RTI::AttributeNotOwned,
   RTI::InvalidDivestitureCondition,
   RTI::FederateDoesNotExist,
   RTI::FederateNotExecutionMember,



RTI 1.0 Programmer’s Guide

120

   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

ARGUMENTS
   theObject   

object whose attributes the federate wishes to divest ownership

   theAttributes   
set of attributes that the federate wishes to divest ownership of. The caller is
responsible for freeing the memory associated with the set and may do so at
any time after the completion of the call.

   theCondition    
enumerated value indicating whether the federate wishes to be relieved of
attribute publication responsibility even in the absence of an accepting
federate.

   theTag    
string value that can contain a description of the reason for the divestiture
request or any other data that is meaningful for a particular federation.  The
caller is responsible for freeing the storage associated with this string and
may do so at any time after the completion of the call.

   theCandidates   
set of federates that are to be offered ownership of the attributes being
divested.  The caller is responsible for freeing the storage associated with
this set and may do so at any time after the completion of the call.

DESCRIPTION
The federate uses this method to request to be relieved of attribute publication
responsibility.  The federate must hold the ownership token for all attributes it
attempts to divest; multiple negotiated divestiture requests may be made for the
same object attribute in the absence of an acquiring federate.

The request sent out by this method will result in the invocation of the
FederateAmbassador::requestAttributeOwnershipAssumption method in each of the
candidate federates (or all federates join in the execution if no candidate federates
were specified.)  This may result in one or more of these federates making a bid for
some or all of the offered attributes; the divesting federate's object manager will
transfer the ownership token for a given attribute to the submitter of the first bid (or
attribute acquisition request) received for the attribute.

If the federate specifies a negotiated divestiture, it will retain ownership of a given
attribute until the receipt of a notification that another federate is willing to assume
ownership (this notification can consist of an ownership bid made in response to
the attribute assumption request or an attribute acquisition request made
independently.)  At this point, the federate's object manager will send an attribute
assumption notification to the assuming federate and inform the divesting federate,
via a FederateAmbassador::attributeOwnershipDivestitureNotification callback, that
it has been relieved of ownership of the attribute.



RTI 1.0 Programmer’s Guide

121

If the federate specifies an unconditional divestiture, it is immediately relieved of
ownership of all divested attributes and is notified of this via a
IFederateAmbassador::attributeOwnershipDivestitureNotification callback (this
callback does not occur synchronously with respect to the attribute divestiture
request, but is queued up for future processing by the RTIambassador::tick
service.)  At this point, the ownership tokens are not held by any federate
(technically, the tokens still reside in the object manager of the divesting federate)
and will be transferred to the first federate expressing interest (i.e. responding to the
attribute assumption request or submitting an independent request for attribute
acquisition.)

Note that the candidate set only defines which federates are explicitly offered
ownership of the tokens via the
FederateAmbassador::requestAttributeOwnershipAssumption method; this does not
prevent non-candidate federates from assuming ownership of the tokens by making
an attribute acquisition request via the
RTIambassador::requestAttributeOwnershipAcquisition service.

There is no negative acknowledgement of a negotiated attribute divestiture request;
if the federate receives no positive response within a reasonable amount of time it
may wish to issue another attribute divestiture request.

Multiple ownership divestiture notifications may result from a single divestiture
request, as different federates may assume ownership of different subsets of the
offered attributes.

RETURN VALUES
A non-exceptional return indicates that the candidate federates (or all federates, if no
candidate federates were specified) have been offered ownership of the specified
attributes and that the calling federate's object manager has been instructed to
transfer the attribute ownership tokens to the first federate willing to assume them.
If an unconditional divestiture was specified, an
attributeOwnershipDivestitureNotification has been queued for delivery to the
federate ambassador on a subsequent RTIambassador::tick (if a negotiated
divestiture was specified, these notifications are given only after a given attribute
has been divested.)

EXCEPTIONS
RTI::ObjectNotKnown - The specified object handle does not correspond to an
object known by the federate's object manager.

RTI::AttributeNotDefined - One or more of the attribute handles is not valid in the
context of the specified object.

RTI::AttributeNotOwned - One or more of the ownership tokens for the specified
attributes is not held by the federate.

RTI::InvalidDivestitureCondition - The specified divestiture condition was not a
recognized enumerated value.

RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI



RTI 1.0 Programmer’s Guide

122

ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
FederateAmbassador::requestAttributeOwnershipAssumption,
FederateAmbassador::attributeOwnershipDivestitureNotification,
RTIambassador::requestAttributeOwnershipAcquisition,
RTIambassador::queryAttributeOwnership, RTI::FederateHandleSet,
RTI::AttributeHandleSet



RTI 1.0 Programmer’s Guide

123

3.4.2 Request Attribute Ownership Assumption +
NAME

requestAttributeOwnershipAssumption - informs the federate of another federate's
desire to divest ownership of a set of attributes and allows the federate to submit a
bid on some or all of the offered attributes

HLA INTERFACE SPECIFICATION SERVICE
5 . 2  - Ownership Management (RTI initiated)

SYNOPSIS
#include <RTI.hh>

virtual
RTI::AttributeHandleSet&
FederateAmbassador::requestAttributeOwnershipAssumption (
  RTI::ObjectID theObject
  const RTI::AttributeHandleSet& offeredAttributes
  const RTI::UserSuppliedTag theTag
)
 throw (
   RTI::ObjectNotKnown,
   RTI::AttributeAlreadyOwned,
   RTI::FederateInternalError
 )

A variation on this method does not include the user-supplied-tag argument:

virtual
RTI::AttributeHandleSet&FederateAmbassador::requestAttributeOwne
rshipAssumption (
  RTI::ObjectID theObject
  const RTI::AttributeHandleSet& offeredAttributes
)
 throw (
   RTI::ObjectNotKnown,
   RTI::AttributeAlreadyOwned,
   RTI::FederateInternalError
 )

ARGUMENTS
   theObject   

handle of the object whose attribute ownership tokens are being offered.

    offeredAttributes   
set of attributes whose ownership tokens are being offered.  The caller
maintains ownership of the storage space associated with this set; the
federate ambassador should create a copy if it wishes to retain the values
after the completion of the call.

   theTag    
string provided as an argument to the
RTIambassador::requestAttributeOwnershipDivestiture method invocation



RTI 1.0 Programmer’s Guide

124

that initiated the attribute assumption request.  This string may contain a
description of the reason for the divestiture request or any other data this is
meaningful for a particular federation.  The caller maintains ownership of
the storage space associated with the string; the federate ambassador should
create a copy if it wishes to retain this information after the completion of
the call.

DESCRIPTION
This callback method is invoked upon the receipt of a request from another federate
to assume ownership of a set of attributes.  This request may be the result of an
explicit action taken by the federate (i.e. a call to the
RTIambassador::requestAttributeOwnershipDivestiture service method) or an
implicit divestiture of ownership tokens due to an unsubscription or resignation.

To be eligible for assumption, an attribute must be published and subscribed by the
federate; ineligible attributes are automatically filtered out by the object manager and
will not be presented to the
FederateAmbassador::requestAttributeOwnershipAssumption method.

The federate ambassador communicates (via the return value) which attributes, if
any, it is willing to assume ownership of.  The return of a non-empty attribute set
results in an ownership token bid being placed on the behalf of the federate.
Usually, attribute tokens are transferred to the submitter of the first ownership bid
received.  If the federate receives ownership of any tokens, it will be notified via a
FederateAmbassador::attributeOwnershipAcquisitionNotification callback.

There is no negative acknowledgement of an ownership token bid; no further action
will occur as a result of a bid for a given attribute if the federate fails to acquire
ownership of the attribute.

RETURN VALUES
The method should allocate storage space for the return value on the heap (using the
AttributeHandleSetFactory::create service); the caller assumes responsibility for the
disposal of this storage.

The return of a non-empty attribute set indicates the federate's desire to submit a bid
for ownership of the contained attributes. Note that the willingness to accept
ownership of an attribute does not guarantee that ownership will be granted; the
federate does not assume ownership until it receives an
FederateAmbassador::attributeOwnershipAcquisitionNotification callback.  If
multiple federates are submitting bids, as is often the case, it is possible that the
federate will not be granted ownership of some or all of the attributes it agrees to
accept.

EXCEPTIONS
RTI::ObjectNotKnown - The object ID does not correspond to an object previously
discovered by the federate.

RTI::AttributeAlreadyOwned - One or more of the attributes contained in the set is
already owned by the federate.

RTI::FederateInternalError - An error internal to the federate has occurred; this
exception will result in an entry being made to the federate's RTI log.



RTI 1.0 Programmer’s Guide

125

SEE ALSO
RTIambassador::requestAttributeOwnershipDivestiture,
FederateAmbassador::attributeOwnershipAcquisitionNotification,
RTIambassador::unsubscribeObjectClassAttribute,
RTIambassador::resignFederationExecution, RTI::AttributeHandleSet



RTI 1.0 Programmer’s Guide

126

3.4.3 Attribute Ownership Divestiture Notification +
NAME

attributeOwnershipDivestitureNotification - informs the federate that ownership
tokens for a set of attributes have been divested; the federate is relieved of
publication duties and can no longer produce updates for the divested attributes

HLA INTERFACE SPECIFICATION SERVICE
5 . 3  - Ownership Management (RTI initiated)

SYNOPSIS
#include <RTI.hh>

virtual
void
FederateAmbassador::attributeOwnershipDivestitureNotification (
  RTI::ObjectID theObject
  const RTI::AttributeHandleSet& releasedAttributes
)
 throw (
   RTI::ObjectNotKnown,
   RTI::AttributeNotKnown,
   RTI::FederateInternalError
 )

ARGUMENTS
   theObject   

object whose attribute have been divested.

   releasedAttributes   
set of attributes that the federate is being relieved of.  The caller maintains
ownership of the storage space for this set; the federate ambassador must
make a copy if it wishes to retain this information after the completion of the
call.

DESCRIPTION
This method informs the federate that it has been relieved of a set of attributes for
which it has an outstanding ownership divestiture request, or has agreed to release
as per a FederateAmbassador::requestAttributeOwnershipRelease request.

If an unconditional divestiture was requested, the federate will receive this
notification immediately after the divestiture request
(RTIambassador::requestAttributeOwnershipDivestiture will enqueue the
notification in the federate's pending message list for processing by
RTIambassador::tick.)  If a negotiated divestiture was requested, this notification is
not issued until the receipt of a positive response to the divestiture request or the
receipt of attribute acquisition request made by another federate.

Multiple ownership divestiture notifications may result from a single divestiture
request, as different federates may assume ownership of different subsets of the
offered attributes.

If the federate has agreed to release attributes as per an acquisition request made by



RTI 1.0 Programmer’s Guide

127

another federate, the divestiture notification will be delivered immediately upon the
return from the FederateAmbassador::requestAttributeOwnershipRelease method
(i.e. the RTI does not wait until a subsequent RTIambassador::tick as is the usual
policy for delivery of notifications.)

Subsequent attempts to update divested attributes will result in an
RTI::AttributeNotOwned exception.

RETURN VALUES
A non-exceptional return indicates that the federate recognizes the specified object
and attributes and will cease publication of updates for the attributes.  (Even if this
method raises an exception, the federate will still be relieved of ownership of the
specified tokens after an entry has been made in the federate's RTI log.)

EXCEPTIONS
RTI::ObjectNotKnown - The federate has not discovered an object with the
specified object ID.

RTI::AttributeNotKnown - One or more of the attributes are not valid in the context
of the specified object or have not been the subject of a divestiture request.

RTI::FederateInternalError - An error internal to the federate has occurred; this
exception will result in an entry being made to the federate's RTI log.

SEE ALSO
RTIambassador::requestAttributeOwnershipDivestiture,
FederateAmbassador::requestAttributeOwnershipRelease, RTI::AttributeHandleSet



RTI 1.0 Programmer’s Guide

128

3.4.4 Attribute Ownership Acquisition Notification +
NAME

attributeOwnershipAcquisitionNotification - informs the federate that the ownership
tokens for a set of attributes have been acquired; the federate is to immediately
assume publication responsibility for the acquired attributes

HLA INTERFACE SPECIFICATION SERVICE
5 . 4  - Ownership Management (RTI initiated)

SYNOPSIS
virtual
voidFederateAmbassador::attributeOwnershipAcquisitionNotification
(
  RTI::ObjectID theObject
  const RTI::AttributeHandleSet& securedAttributes
)
 throw (
   RTI::ObjectNotKnown,
   AttributeNotKnown,
   FederateInternalError
 )

ARGUMENTS
   theObject   

object whose attributes have been acquired by the federate.

   securedAttributes   
set of attributes of the specified object that have been acquired by the
federate.  The caller maintains ownership of the storage space associated
with the set; the federate ambassador should make a copy if it wishes to
retain the information after the completion of the call.

DESCRIPTION
This method informs the federate that it has acquired ownership tokens for the
given set of attributes; this acquisition may be the result of a successful ownership
bid made in response to an attribute assumption request, or the receipt of a positive
response to an attribute acquisition request.

Multiple acquisition notifications may result from a single acquisition request, as
ownership tokens for different subsets of the set of requested attributes may reside
in different federates.  It is theoretically possible, though unlikely, that multiple
acquisition notifications will result from a single attribute ownership bid.

RETURN VALUES
A non-exceptional return indicates that the federate recognizes the specified object
and attributes and will assume ownership responsibilities of these attributes.  An
exceptional return will result in an error message being entered into the RTI log file;
ownership of the tokens will still be acquired by the federate.

EXCEPTIONS
RTI::ObjectNotKnown - The federate has not discovered an object with the
specified object ID.



RTI 1.0 Programmer’s Guide

129

AttributeNotKnown - One or more of the attribute handles are not valid within the
context of the specified object, are already owned by the federate, or are not
published or not subscribed by the federate.

RTI::FederateInternalError - An error internal to the federate has occurred.

SEE ALSO
RTIambassador::requestAttributeOwnershipAcquisition,
FederateAmbassador::requestAttributeOwnershipAssumption,
FederateAmbassador::requestAttributeOwnershipRelease, RTI::AttributeHandleSet



RTI 1.0 Programmer’s Guide

130

3.4.5 Request Attribute Ownership Acquisition
NAME

requestAttributeOwnershipDivestiture - inform the federation of the federate's
desire to acquire ownership of a specified set of attributes for a specified object

HLA INTERFACE SPECIFICATION SERVICE
5 . 5  - Ownership Management (federate initiated)

SYNOPSIS
#include <RTI.hh>

void
requestAttributeOwnershipAcquisition (
  RTI::ObjectID theObject
  const RTI::AttributeHandleSet& desiredAttributes
  const RTI::UserSuppliedTag theTag
)
 throw (
   RTI::ObjectNotKnown,
   RTI::ObjectClassNotPublished,
   RTI::ObjectClassNotSubscribed,
   RTI::AttributeNotDefined,
   RTI::AttributeNotPublished,
   RTI::AttributeNotSubscribed,
   RTI::FederateOwnsAttributes,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

ARGUMENTS
   theObject   

object whose attributes the federate wishes to acquire ownership of.

   theAttributes   
attributes of the specified object that the federate wishes to acquire
ownership of.  The caller is responsible for freeing the storage associated
with this set and may do so at any time after the completion of the call.

DESCRIPTION
This method informs the federation that the federate wishes to acquire ownership of
the specified attributes of the specified object.  If the ownership token for a given
attribute exists but is not held by any federate (technically, the token is held by the
object manager of some federate but not owned by the associated federate
ambassador), the federate is automatically granted ownership of the attribute.  If the
token is held by a federate, that federate is requested to relinquish control via its
FederateAmbassador::requestAttributeOwnershipRelease method.

If the federate successfully acquires some or all of the requested attributes, it will be
notified via its FederateAmbassador::attributeOwnershipAcquisitionNotification



RTI 1.0 Programmer’s Guide

131

method. It is possible that a single acquisition request result in multiple acquisition
notifications, as different subsets of the set of requested attributes may be held by
different federates.  These notifications do not occur synchronously with respect to
the acquisition request method, but will occur at a later time in response to an
RTIambassador::tick invocation.

There is no negative acknowledgement of ownership acquisition requests; if a given
attribute ownership token no longer exists or if it is held by a federate that declines
to relinquish control, then no further actions result from the ownership acquisition
request for that attribute.

A federate must publish and subscribe a given attribute and its associated object
class before attempting to acquire tokens for that attribute.  (Note that here "object
class" refers to the class by which the federate knows an object, which may differ
from the actual class of the object.)

RETURN VALUES
A non-exceptional return indicates that a request has been made on behalf of the
federate to obtain ownership of the specified attributes.  It is important to note that a
successful return of this method does not imply acquisition of the requested
attributes, only that the request has been successfully issued.

EXCEPTIONS
RTI::ObjectNotKnown - The specified object ID is invalid in the context of the
current federation execution, or the associated object is not known to the federate.

ObjectClassNotPublished - The object class of the specified object is not published
by the federate.

ObjectClassNotSubscribed - The object class of the specified object is not
subscribed by the federate.

AttributeNotDefined - One or more of the specified attribute handles is not valid in
the context of the specified object's object class.

AttributeNotPublished - One or more of the specified attribute handles is not
published by the federate.

AttributeNotSubscribed - One or more of the specified attribute handles is not
subscribed by the federate.

FederateOwnsAttributes - The federate already holds ownership tokens for one or
more of the attributes specified.

RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.



RTI 1.0 Programmer’s Guide

132

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
FederateAmbassador::attributeOwnershipAcquisitionNotification,
FederateAmbassador::requestAttributeOwnershipRelease,
RTIambassador::publishObjectClass,
RTIambassador::subscribeObjectClassAttribute,
RTIambassador::queryAttributeOwnership, RTI::AttributeHandleSet



RTI 1.0 Programmer’s Guide

133

3.4.6 Request Attribute Ownership Release +
NAME

requestAttributeOwnershipRelease - inform the federate that another federate has
requested acquisition of one or more attribute ownership tokens held by the federate

HLA INTERFACE SPECIFICATION SERVICE
5 . 6  - Ownership Management (RTI initiated)

SYNOPSIS
#include <RTI.hh>

virtual
RTI::AttributeHandleSet
&
FederateAmbassador::requestAttributeOwnershipRelease (
  RTI::ObjectID theObject
  const RTI::AttributeHandleSet& candidateAttributes
  const RTI::UserSuppliedTag theTag
)
 throw (
   RTI::ObjectNotKnown,
   RTI::AttributeNotKnown,
   RTI::FederateInternalError
 )

ARGUMENTS
   theObject   

object whose attributes the federate is requested to release.

   candidateAttributes   
set of attributes that the federate is requested to release.  The caller maintains
ownership of the storage used by this set; if the federate wishes to retain this
value beyond the termination of the call it should make a copy.

   theTag    
string value given as an argument to the
RTIambassador::requestAttributeOwnershipRelease invocation that
triggered the request.  This string can contain a description of the reason for
the acquisition request or any other value that is meaningful for a particular
federation.  The caller maintains ownership of the storage used by this
string; if the federate wishes to retain this value beyond the termination of
the call it should make a copy.

DESCRIPTION
This method informs the federate of another federate's interest in acquiring one or
more of the attribute ownership tokens it holds.  The federate indicates, via the
return value of the method, the set of attributes for which it is willing to relinquish
ownership.  If the returned set is non-empty, the acquiring federate will be notified
that it has assumed ownership of the tokens via its
FederateAmbassador::attributeOwnershipAcquisitionNotification method.  Unlike
assumption of attributes, release of attributes is not subject to further negotiation;
any valid attributes returned by this method are guaranteed to be released to the



RTI 1.0 Programmer’s Guide

134

requesting federate.

A non-empty return set will also trigger a
FederateAmbassador::attributeOwnershipDivestitureNotification callback to the
releasing federate.  This notification occurs immediately after the
FederateAmbassador::requestAttributeOwnershipRelease call (unlike most
notifications, it is not queued up for future processing by RTIambassador::tick.)

RETURN VALUES
The method should allocate storage space for the return value on the heap (using the
AttributeHandleSetFactory::create service); the caller assumes responsibility for the
disposal of this storage.

The return of a non-empty attribute set causes ownership of the returned attributes
to be divested to the requesting federate; the involved federates are notified via
federate ambassador callbacks as described above.

EXCEPTIONS
RTI::ObjectNotKnown - The object ID specified does not correspond to an object
that has been discovered by the federate.

AttributeNotKnown - One or more of the specified attribute handles is not valid in
the context of the specified object or the attribute ownership token is not held by the
federate.

RTI::FederateInternalError - An error internal to the federate has occurred; this
exception will result in an entry being made to the federate's RTI log.

SEE ALSO
RTIambassador::requestAttributeOwnershipAcquisition,
FederateAmbassador::attributeOwnershipAcquisitionNotification,
FederateAmbassador::attributeOwnershipDivestitureNotification,
RTI::AttributeHandleSet



RTI 1.0 Programmer’s Guide

135

3.4.7 Query Attribute Ownership
NAME

queryAttributeOwnership, informAttributeOwnership, attributeIsOwnedByFederate
- determine which federate, if any, holds the attribute ownership token for a given
attribute

HLA INTERFACE SPECIFICATION SERVICE
5 . 7  - Ownership Management (federate initiated)

(1.0 implements this service as a complimentary pair of methods, one federate-
initiated and one RTI-initiated.)

SYNOPSIS
#include <RTI.hh>

void
RTIambassador::queryAttributeOwnership (
  RTI::ObjectID theObject
  RTI::AttributeHandle theAttribute
)
 throw (
   RTI::ObjectNotKnown,
   RTI::AttributeNotDefined,
   RTI::AttributeNotKnown,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

virtual
void
FederateAmbassador::informAttributeOwnership (
  RTI::ObjectID theObject
  RTI::AttributeHandle theAttribute
  RTI::FederateHandle theOwner
)
 throw (
   RTI::ObjectNotKnown,
   RTI::AttributeNotKnown,
   RTI::FederateInternalError
 )

An alternate method is only able to determine if the ownership token is held by the
local federate, but has the advantage of providing a response synchronously:

RTI::Boolean
RTIambassador::attributeIsOwnedByFederate (
  RTI::ObjectID theObject
  RTI::AttributeHandle theAttribute
)



RTI 1.0 Programmer’s Guide

136

 throw (
   RTI::ObjectNotKnown,
   RTI::AttributeNotDefined,
   RTI::AttributeNotKnown,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

ARGUMENTS
   theObject   

object whose attribute ownership status is being queried.

   theAttribute   
attribute whose ownership status is being queried.

   theHandle   
federate handle of the federate holding the attribute ownership token.

DESCRIPTION
RTIambassador::queryAttributeOwnership queries the federation in an attempt to
locate the possessor of the specified attribute ownership token.  If any federate
holds the token, it will send back a positive acknowledgement which is delivered to
the querying federate in the form of a
FederateAmbassador::informAttributeOwnership callback.  This notification does
not occur synchronously with respect to the
RTIambassador::queryAttributeOwnership call; the notification (if any) will be
presented upon a subsequent invocation of the RTIambassador::tick service.

There is no negative acknowledgement of attribute ownership, i.e. the querying
federate will not be notified if the query fails to locate the ownership token.  It is
therefore impossible to determine definitively that a given ownership token is not
held by any federate in the federation, as the query response may take an arbitrarily
long time to arrive from the owning federate.

RTIambassador::attributeIsOwnedByFederate provides a facility for the federate to
quickly and synchronously determine whether a given ownership token is locally
held.

Note that an attribute for which a federate has outstanding negotiated divestiture
requests is still considered to be held by the federate until ownership is assumed by
another federate.

RETURN VALUES
A non-exceptional return from RTIambassador::queryAttributeOwnership indicates
that an attribute ownership query has been sent out to the federation on behalf of the
federate.

A non-exceptional return from FederateAmbassador::informAttributeOwnership
indicates that the federate understands the ownership information provided by the
federation.



RTI 1.0 Programmer’s Guide

137

RTIambassador::attributeIsOwnedByFederate returns RTI_TRUE if the specified
ownership token is held by the local federate or RTI_FALSE if the ownership token
is held by another federate, unowned, or no longer exists.

EXCEPTIONS
RTI::ObjectNotKnown - The specified object handle does not correspond to an
object known by the federate's object manager.

RTI::AttributeNotDefined - The attribute handle is not valid in the context of the
specified object.

RTI::AttributeNotKnown - (Not thrown in 1.0.)

RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

RTI::FederateInternalError - An error internal to the federate has occurred; this
exception will result in an entry being made to the federate's RTI log.

SEE ALSO
RTIambassador::requestAttributeOwnershipAcquisition,
RTIambassador::requestAttributeOwnershipDivestiture



RTI 1.0 Programmer’s Guide

138

3.5 Time Management

Table 3-27: Time Management Services

Section Service Title Service
Implemented

6.1 Request Federation Time Yes
6.2 Request LBTS Yes
6.3 Request Federate Time Yes
6.4 Request Minimum Next Event Time Yes
6.5 Set Lookahead Yes
6.6 Request Lookahead Yes
6.7 Time Advance Request Yes
6.8 Next Event Request Yes
6.9 Flush Queue Request Yes
6.10 Time Advance Grant † Yes



RTI 1.0 Programmer’s Guide

139

3.5.1 Request Federation Time
NAME

requestFederationTime - request the current federation time

HLA INTERFACE SPECIFICATION SERVICE
6 . 1  - Time Management (federate initiated)

SYNOPSIS
RTI::FederationTime
RTIambassador::requestFederationTime ( )
 throw (
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

DESCRIPTION
Federation time for a given federate is defined as the minimum of the current
federation lower-bound time stamp and the federate's logical time.  This value
represents the maximum time-stamp value that is eligible for delivery to the
federation at this particular instance in time.

RETURN VALUES
The returned value is the current federation time, as perceived by the federate.

EXCEPTIONS
RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTIambassador::requestLBTS, RTIambassador::requestFederateTime,
RTIambassador::requestMinNextEventTime,
RTIambassador::timeAdvanceRequest, RTIambassador::tick



RTI 1.0 Programmer’s Guide

140

3.5.2 Request LBTS
NAME

requestLBTS - request the current effective federation lower-bound time stamp
(LBTS) for the federate

HLA INTERFACE SPECIFICATION SERVICE
6 . 2  - Time Management (federate initiated)

SYNOPSIS
RTI::FederationTime
RTIambassador::requestLBTS ( )
 throw (
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

DESCRIPTION
The federation LBTS is defined as the minimum time-stamp such that it can be
guaranteed that no federate will generate any more time-stamp-ordered events with a
lower time-stamp.  A time-regulating federate's LBTS is its current logical time plus
its current lookahead; a non-time-regulating federate's LBTS is positive infinity, as
it cannot generate any time-stamp-ordered messages.  The federation LBTS is the
minimum of the LBTS's of all participating federates.

Time-stamp ordered messages with a time-stamp less than LBTS may still be
queued for processing, and may therefore be delivered to the federate as a result of
RTIambassador::tick invocations; the LBTS simply guarantees that no new
messages with a lower-time stamp will be queued for processing (to find out the
absolute minimum time-stamp of all messages eligible for future delivery, use
RTIambassador::requestMinNextEventTime.)

Non-time-constrained federates cannot receive TSO events, so their effective
federation LBTS is infinity.

RETURN VALUES
The returned value is the current federation lower-bound time stamp.

EXCEPTIONS
RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in



RTI 1.0 Programmer’s Guide

141

the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTIambassador::requestFederationTime, RTIambassador::requestFederateTime,
RTIambassador::requestMinNextEventTime,
RTIambassador::timeAdvanceRequest, RTIambassador::tick,
RTIambassador::turnRegulationOn



RTI 1.0 Programmer’s Guide

142

3.5.3 Request Federate Time
NAME

requestFederateTime - request the current federate logical time

HLA INTERFACE SPECIFICATION SERVICE
6 . 3  - Time Management (federate initiated)

SYNOPSIS
RTI::FederationTime
RTIambassador::requestFederateTime ( )
 throw (
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

DESCRIPTION
This service allows the federate to obtain its current logical time, i.e. the most recent
time requested by the federate via RTIambassador::timeAdvanceRequest.  If the
federate is time-regulating, its logical time plus its lookahead constitutes the
minimum allowable time-stamp of time-stamp-ordered messages subsequently sent
by the federate.  If the federate is time-constrained, the logical time represents the
maximum time-stamp of time-stamp-ordered events that will be delivered to the
federate prior to the next time-advance request.

RETURN VALUES
The returned value is the current federate logical time.

EXCEPTIONS
RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTIambassador::requestFederationTime, RTIambassador::requestLBTS,
RTIambassador::requestMinNextEventTime,
RTIambassador::timeAdvanceRequest, RTIambassador::tick,
RTIambassador::turnRegulationOn



RTI 1.0 Programmer’s Guide

143



RTI 1.0 Programmer’s Guide

144

3.5.4 Request Minimum Next Event Time
NAME

requestMinimumNextEventTime - request the minimum possible time-stamp of the
earliest time-stamp-ordered event that will ever be delivered in the federation's
future

HLA INTERFACE SPECIFICATION SERVICE
6 . 4  - Time Management (federate initiated)

SYNOPSIS
RTI::FederationTime
RTIambassador::requestMinNextEventTime ( )
 throw (
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

DESCRIPTION
The minimum next event time is defined as the largest time-stamp such that RTI can
guarantee that no time-stamp-ordered (TSO) events will be delivered to the federate
with a smaller time-stamp value.  This is defined as the minimum of the federation
lower-bound time stamp and the time-stamp of the earliest time-stamp-ordered event
(if any) in the federate's event queue.  Note that in the case of a non-constrained
federate, this is always infinity (i.e. no TSO events and an infinite LBTS.)  A time
advance grant can never be made to a federation time greater than the minimum next
event time.

RETURN VALUES
The returned value is the current minimum next event time for the federate.

EXCEPTIONS
RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTIambassador::requestFederationTime, RTIambassador::requestLBTS,



RTI 1.0 Programmer’s Guide

145

RTIambassador::requestFederateTime, RTIambassador::timeAdvanceRequest,
RTIambassador::tick, RTIambassador::setTimeConstrained



RTI 1.0 Programmer’s Guide

146

3.5.5 Set Lookahead
NAME

setLookahead - redefine the lookahead window for the federate

HLA INTERFACE SPECIFICATION SERVICE
6 . 5  - Time Management (federate initiated)

SYNOPSIS
void
RTIambassador::setLookahead (
  RTI::FederationTimeDelta theLookahead
)
 throw (
   RTI::InvalidLookahead,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

ARGUMENTS
   theLookahead    

new lookahead value to use for the federate.

DESCRIPTION
This service allows the federate to dynamically modify its lookahead window, i.e.
the amount of time between the federate logical time and the earliest allowable time-
stamp on a time-stamp-ordered (TSO) event generated by the federate.  Lookahead
is only meaningful for time-regulating federates, as non-time-regulating federates
do not generate TSO events.  To minimize the overhead associated with
synchronizing federation time advances, federates should make their lookahead
window as large as is feasible.

If the specified lookahead is smaller than the current lookahead, the new lookahead
does not go into effect immediately, as this would result in the federate breaking an
earlier "promise" not to generate TSO events before a given federation time.  In this
case, the federate's actual lookahead is gradually decreased as the federate's logical
time is increased (to preserve a constant value of "logical time + lookahead") until it
becomes possible to use the specified lookahead value.  If the specified lookahead
is greater than the current federation lookahead, it goes into effect immediately.

Obviously, lookahead values must be non-negative.  A federate's lookahead
defaults to EPSILON as defined in $RTI_HOME/include/RTItypes.h.

Time-constrained zero-lookahead federates are an interesting "special case"; see
RTIambassador::timeAdvanceRequestAvailable and
RTIambassador::nextEventRequestAvailable for discussion of special
considerations for such federates.

RETURN VALUES
A non-exceptional return indicates that the federate lookahead will be adjusted to the



RTI 1.0 Programmer’s Guide

147

specified value as soon as possible.

EXCEPTIONS
RTI::InvalidLookahead - The specified lookahead is less than the minimum
allowable federate lookahead (zero.)

RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTIambassador::timeAdvanceRequest,
RTIambassador::timeAdvanceRequestAvailable,
RTIambassador::requestLookahead, RTIambassador::requestLBTS,
RTIambassador::nextEventRequest, RTIambassador::nextEventRequestAvailable



RTI 1.0 Programmer’s Guide

148

3.5.6 Request Lookahead
NAME

requestLookahead - obtain the current lookahead window being used for the
federate

HLA INTERFACE SPECIFICATION SERVICE
6 . 6  - Time Management (federate initiated)

SYNOPSIS
RTI::FederationTimeDelta
RTIambassador::requestLookahead ( )
 throw (
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

DESCRIPTION
This service allows the federate to obtain the value of its effective lookahead, i.e.
the time window between its logical time and the minimum allowable time-stamp of
a time-stamp-ordered event generated by the federate.  The effective lookahead at a
given time is at least as great as the current lookahead as specified by the
RTIambassador::setLookahead service (see the section on this service for a
discussion of why this is true.)

RETURN VALUES
The return value is the current effective lookahead for the federate.

EXCEPTIONS
RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTIambassador::timeAdvanceRequest, RTIambassador::setLookahead,
RTIambassador::requestFederationTime, RTIambassador::requestFederateTime,
RTIambassador::requestLBTS



RTI 1.0 Programmer’s Guide

149

3.5.7 Time Advance Request
NAME

timeAdvanceRequest - request an advance of the logical time of the federate to a
specified federation time

HLA INTERFACE SPECIFICATION SERVICE
6 . 7  - Time Management (federate initiated)

SYNOPSIS
void
timeAdvanceRequest (
  RTI::FederationTime theTime
)
 throw (
   RTI::TimeAdvanceAlreadyInProgress,
   RTI::FederationTimeAlreadyPassed,
   RTI::InvalidFederationTime,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

A variation is useful for zero-lookahead federates:

void
RTIambassador::timeAdvanceRequestAvailable (
  RTI::FederationTime theTime
)
 throw (
   RTI::TimeAdvanceAlreadyInProgress,
   RTI::FederationTimeAlreadyPassed,
   RTI::InvalidFederationTime,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

ARGUMENTS
   theTime   

federation time the federate wishes to advance its logical time to.

DESCRIPTION
These services allow the federate to request an advance in its logical time to a
specified federation time and arrange to be notified when such an advance is
achieved, i.e. the RTI can guarantee that all time-stamp-ordered (TSO) events
delivered to the federate in the future will have a time-stamp greater than (or not less
than in the case of RTIambassador::timeAdvanceRequestAvailable) the new federate
logical time.



RTI 1.0 Programmer’s Guide

150

By requesting a time advance, the federate is agreeing to not generate any time-
stamp-ordered events with a time-stamp less than the requested time plus the current
federate lookahead (for non-time-regulating federates this is trivial, as such
federates do not generate any time-stamp-ordered events.)

When the criteria for completion of the time-advance request have been met, the
federate will be notified of such via the FederateAmbassador::timeAdvanceGrant
callback.  The federate may not make a time-advance request while any other time-
advancement service is in progress, i.e. the federate is waiting on a
FederateAmbassador::timeAdvanceGrant.

For non-time-constrained federates, time advances are trivial: by definition such
federates do not receive any time-stamp-ordered events, so a time-advance grant is
immediately scheduled for delivery by a subsequent invocation of the
RTIambassador::tick service.

For time-constrained federates, a time-advance is granted when the minimum next
event time (see RTIambassador::requestMinNextEventTime) exceeds the requested
federate time.  In the case of RTIambassador::timeAdvanceRequestAvailable, the
time-advance is also granted if the minimum next event time equals the requested
time and there are no queued TSO events eligible for delivery to the federate.

The RTIambassador::timeAdvanceRequestAvailable variation is similar to the
RTIambassador::timeAdvanceRequest service but does not necessarily deliver all
events at the requested time before issuing the time-advance grant, making it
attractive for zero-lookahead federates that wish to simultaneously generate and
process events at the same logical time.

RETURN VALUES
A non-exceptional return indicates that the federate has successfully initiated the
time-advancement process.  TSO events from the current time through the requested
time (inclusive) may now be delivered to the federate, and the federate may no
longer generate TSO events with a time-stamp of less than the requested time plus
the federate lookahead.  The federate will receive notification of the successful
completion of the time advance (as described previously) via its
FederateAmbassador::timeAdvanceGrant callback.

EXCEPTIONS
RTI::TimeAdvanceAlreadyInProgress - A previous time advance request, next
event request, or flush queue request has not yet been completed.

RTI::FederationTimeAlreadyPassed - The requested time is less than the current
federate logical time.

RTI::InvalidFederationTime - Not thrown in 1.0.

RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.



RTI 1.0 Programmer’s Guide

151

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
FederateAmbassador::timeAdvanceGrant, RTIambassador::tick,
RTIambassador::requestFederateTime, RTIambassador::requestLBTS,
RTIambassador::setTimeConstrained, RTIambassador::turnRegulationOn,
RTIambassador::nextEventRequest, RTIambassador::flushQueueRequest



RTI 1.0 Programmer’s Guide

152

3.5.8 Next Event Request
NAME

nextEventRequest, nextEventRequest - advance the federate's logical time to the
time-stamp of the next TSO event in the federation

HLA INTERFACE SPECIFICATION SERVICE
6 . 8  - Time Management (federate initiated)

SYNOPSIS
void
nextEventRequest (
  RTI::FederationTime theTime
)
 throw (
   RTI::TimeAdvanceAlreadyInProgress,
   RTI::FederationTimeAlreadyPassed,
   RTI::InvalidFederationTime,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

A variation is useful for zero-lookahead federates:

void
nextEventRequestAvailable (
  RTI::FederationTime theTime
)
 throw (
   RTI::TimeAdvanceAlreadyInProgress,
   RTI::FederationTimeAlreadyPassed,
   RTI::InvalidFederationTime,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

ARGUMENTS
   theTime   

time to advance the federation logical time to in the absence of an
intervening TSO event.

DESCRIPTION
These services allow the federate to advance in time to the time-stamp of the next
TSO event occurring in the federation.  A FederateAmbassador::timeAdvanceGrant
will occur after a TSO event has been delivered or the federation lower-bound time
stamp (LBTS) advances past the specified cutoff time; the grant will be to the time-
stamp of the event or the specified cutoff time, respectively. In the interim, any



RTI 1.0 Programmer’s Guide

153

number of receive-ordered events and possibly some TSO events with the same
time-stamp as the first TSO event will be delivered.  The
RTIambassador::nextEventRequest service defers the time-advance grant until it can
be guaranteed that all TSO events at the grant-time have been delivered; the
RTIambassador::nextEventRequestAvailable service does not, making it attractive
for zero-lookahead federates that wish to simultaneously generate and process
events at the same logical time.

Note that if the federate is not time-constrained, the completion criteria are trivially
met (i.e. the effective federation LBTS for a non-constrained federate is always
infinity), so a time advance grant to the cutoff time will be immediately scheduled
for delivery by a subsequent invocation of RTIambassador::tick.

RETURN VALUES
A non-exceptional return indicates that the federate has successfully announced its
desire to advance in time; the federate will be notified of the successful completion
of the request (as described above) via a subsequent
FederateAmbassador::timeAdvanceGrant callback.

EXCEPTIONS
RTI::TimeAdvanceAlreadyInProgress - A previous time advance request, next
event request, or flush queue request has not yet been completed.

RTI::FederationTimeAlreadyPassed - The specified federation time is less than the
current logical time of the federation.

RTI::InvalidFederationTime - Not thrown in 1.0.

RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
FederateAmbassador::timeAdvanceGrant, RTIambassador::tick,
RTIambassador::requestFederateTime, RTIambassador::requestLBTS,
RTIambassador::setTimeConstrained, RTIambassador::turnRegulationOn,
RTIambassador::flushQueueRequest, RTIambassador::timeAdvanceRequest



RTI 1.0 Programmer’s Guide

154

3.5.9 Flush Queue Request
NAME

flushQueueRequest - flush the federate's internal event queues, violating the
ordering of time-stamp-ordered messages if necessary

HLA INTERFACE SPECIFICATION SERVICE
6 . 9  - Time Management (federate initiated)

SYNOPSIS
void
RTIambassador::flushQueueRequest (
  RTI::FederationTime theTime
)
 throw (
   RTI::TimeAdvanceAlreadyInProgress,
   RTI::FederationTimeAlreadyPassed,
   RTI::InvalidFederationTime,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

ARGUMENTS
   theTime   

maximum federate logical time to advance to upon completion of the flush.

DESCRIPTION
This service designates all events currently in the federate's event queue as eligible
for presentation to the federate.  Subsequent invocations of RTIambassador::tick
will first process any receive-ordered events that have arrived, then will process
events in the TSO queue without regard for the federation lower-bound time stamp.
For any given invocation of RTIambassador::tick, the earliest available TSO event
is processed; however, RTI may not be able to guarantee that TSO events with a
lower time-stamp will not arrive in the future.

A time advance is granted when the federate has processed all TSO events that were
queued at the time of the request.  The grant time is the minimum of the minimum
next event time and the specified cutoff time.  Note that this is trivial in the case of a
non-time-constrained federation, which by definition has no events in its TSO
queue; in this case, a grant to the specified cutoff time will be made upon the next
invocation of RTIambassador::tick.

RETURN VALUES
A non-exceptional return indicates that the federate has successfully announced its
desire to advance in time; the federate will be notified of the successful completion
of the request via a subsequent FederateAmbassador::timeAdvanceGrant callback.

EXCEPTIONS
RTI::TimeAdvanceAlreadyInProgress - A previous time advance request, next
event request, or flush queue request has not yet been completed.



RTI 1.0 Programmer’s Guide

155

RTI::FederationTimeAlreadyPassed - The specified federation time is less than the
current logical time of the federation.

RTI::InvalidFederationTime - Not thrown in 1.0.

RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
FederateAmbassador::timeAdvanceGrant, RTIambassador::tick,
RTIambassador::requestFederateTime, RTIambassador::requestLBTS,
RTIambassador::setTimeConstrained, RTIambassador::turnRegulationOn,
RTIambassador::timeAdvanceRequest, RTIambassador::nextEventRequest



RTI 1.0 Programmer’s Guide

156

3.5.10 Time Advance Grant +
NAME

timeAdvanceGrant - inform the federate that a previous time advance request, flush
queue request, or next event request has been completed

HLA INTERFACE SPECIFICATION SERVICE
6 .10  - Time Management (RTI initiated)

SYNOPSIS
virtual
void
FederateAmbassador::timeAdvanceGrant (
  RTI::FederationTime theTime
)
 throw (
   RTI::InvalidFederationTime,
   RTI::TimeAdvanceWasNotInProgress,
   RTI::FederationTimeAlreadyPassed,
   RTI::FederateInternalError
 )

ARGUMENTS
   theTime   

time granted to, i.e. the new value of the federate's logical time.

DESCRIPTION
This callback is invoked to notify the federate of the successful completion of a
time-advance service (i.e. time advance request, next event request , or flush queue
request.)  The specified grant time becomes the new logical time of the federation;
this time is guaranteed to be no greater than the federate's minimum next event time
and may be less than this time, depending on the the manner in which the grant was
requested.

The receipt of a time advance grant indicates that all time-stamp-ordered (TSO)
events with a time-stamp of less than the grant time that will ever occur in the
federation have already been processed by the federate.  Only receive-order events
and TSO events occurring at exactly the grant time will be eligible for processing
until the next invocation of a time-advance service.

Note that non-time-constrained federates have no concept of TSO events, so time
advances are immediately granted to such federates.

RETURN VALUES
A non-exceptional return indicates that the federate understands the time advance
grant notification.

An exceptional return will cause an entry to be made in the federate's RTI log file;
the logical time of the federate is still considered to have been advanced.

EXCEPTIONS
RTI::InvalidFederationTime - The specified grant time is invalid.



RTI 1.0 Programmer’s Guide

157

RTI::TimeAdvanceWasNotInProgress - There is not an outstanding time advance
request, next event request, or flush queue request.

RTI::FederationTimeAlreadyPassed - The specified grant time is less than the
current federate logical time.

RTI::FederateInternalError - An error internal to the federate has occurred.

SEE ALSO
RTIambassador::tick, RTIambassador::requestFederateTime,
RTIambassador::requestLBTS, RTIambassador::setTimeConstrained,
RTIambassador::turnRegulationOn, RTIambassador::timeAdvanceRequest,
RTIambassador::nextEventRequest, RTIambassador::flushQueueRequest



RTI 1.0 Programmer’s Guide

158

3.6 Data Distribution Management

Data Distribution Management services are not implemented in the F.0 version of the Run-Time
Infrastructure.  The DARPA funded Synthetic Theater of War (STOW) program is developing a prototype
RTI specifically focusing on performance and scalability.  The results of the STOW RTI DDM experiments
will be incorporated at a later date.

Table 3-28: Data Distribution Management Services

Section Service Title Service Implemented

7.1 Create Update Region No
7.2 Create Subscription Region No
7.3 Associate Update Region No
7.4 Change Thresholds † No
7.5 Modify Region No
7.6 Delete Region No



RTI 1.0 Programmer’s Guide

159

3.7 RTI Support Services

Table 3-29: RTI Support Services

Section Service Title Service Implemented
8.1 Get Object Class Handle Yes
8.2 Get Object Class Name Yes
8.3 Get Attribute Handle Yes
8.4 Get Attribute Name Yes
8.5 Get Interaction Class Handle Yes
8.6 Get Interaction Class Name Yes
8.7 Get Parameter Handle Yes
8.8 Get Parameter Name Yes
8.9 Get Space Handle No
8.10 Get Space Name No
8.11 Set Time Regulating Yes
8.12 Set Time Constrained Yes
8.13 Tick Yes
8.14 dequeueFIFOasynchronously Yes



RTI 1.0 Programmer’s Guide

160

3.7.1 Get Handle and Get Name Services
NAME

getFederateName, getFederateHandle, getSpaceName, getSpaceHandle,
getParameterName, getParameterHandle, getInteractionClassName,
getInteractionClassHandle, getAttributeName, getAttributeHandle,
getObjectClassName, getObjectClassHandle - convert between symbolic (string)
names and RTI handles

HLA INTERFACE SPECIFICATION SERVICE
8.1-8 .12  - RTI Support Services (federate initiated)

SYNOPSIS
Methods for conversion to/from object class handles:

RTI::ObjectClassHandle
RTIambassador::getObjectClassHandle (
  const RTI::ObjectClassName theName
)
 throw (
   RTI::NameNotFound,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

RTI::ObjectClassName
RTIambassador::getObjectClassName (
  RTI::ObjectClassHandle theHandle
)
 throw (
   RTI::ObjectClassNotDefined,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

Methods for conversion to/from attribute handles:

RTI::AttributeHandle
RTIambassador::getAttributeHandle (
  const RTI::AttributeName theName
  RTI::ObjectClassHandle whichClass
)
 throw (
   RTI::ObjectClassNotDefined,
   RTI::NameNotFound,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,



RTI 1.0 Programmer’s Guide

161

   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

RTI::AttributeName
RTIambassador::getAttributeName (
  RTI::AttributeHandle theHandle
  RTI::ObjectClassHandle whichClass
)
 throw (
   RTI::ObjectClassNotDefined,
   RTI::AttributeNotDefined,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

Methods for conversion to/from interaction class handles:

RTI::InteractionClassHandle
RTIambassador::getInteractionClassHandle (
  const RTI::InteractionClassName theName
)
 throw (
   RTI::NameNotFound,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

RTI::InteractionClassName
RTIambassador::getInteractionClassName (
  RTI::InteractionClassHandle theHandle
)
 throw (
   RTI::InteractionClassNotDefined,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

Methods for conversion to/from parameter handles:

RTI::ParameterHandle
RTIambassador::getParameterHandle (
  const RTI::ParameterName theName
  RTI::InteractionClassHandle whichClass



RTI 1.0 Programmer’s Guide

162

)
 throw (
   RTI::InteractionClassNotDefined,
   RTI::NameNotFound,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

RTI::ParameterName
RTIambassador::getParameterName (
  RTI::ParameterHandle        theHandle
  RTI::InteractionClassHandle whichClass
)
 throw (
   RTI::InteractionClassNotDefined,
   RTI::InteractionParameterNotDefined,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

Methods for conversion to/from space handles (not implemented in 1.0):

RTI::SpaceHandle
RTIambassador::getSpaceHandle (
  const RTI::SpaceName theName
)
 throw (
   RTI::NameNotFound,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::RTIinternalError,
   RTI::UnimplementedService
 )

   RTI::SpaceName RTIambassador::getSpaceName (
        const RTI::SpaceHandle theHandle)
     throw (RTI::SpaceNotDefined,
            RTI::FederateNotExecutionMember,
            RTI::ConcurrentAccessAttempted,
            RTI::RTIinternalError,
            RTI::UnimplementedService); */

Methods for conversion to/from federate handles (not implemented in 1.0):

RTI::FederateHandle
RTIambassador::getFederateHandle (
  const RTI::FederateName theName
)



RTI 1.0 Programmer’s Guide

163

 throw (
   RTI::FederateDoesNotExist,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::RTIinternalError,
   RTI::UnimplementedService
 )

   RTI::FederateName RTIambassador::getFederateName (
        RTI::FederateHandle theHandle)
     throw (RTI::FederateDoesNotExist,
            RTI::FederateNotExecutionMember,
            RTI::ConcurrentAccessAttempted,
            RTI::RTIinternalError,
            RTI::UnimplementedService); */

ARGUMENTS
   theName   

string specifying the symbolic name to be converted to an RTI-defined
handle.  The caller is responsible for freeing the storage associated with this
string and may do so at its leisure.

   theHandle   
RTI  class, attribute, interaction, parameter, space, federate  handle to be
converted to a symbolic (string) name.

     whichClass   
object (interaction) class whose attributes (parameters) are being converted.

DESCRIPTION
These methods provide a mechanism for the federate to convert between symbolic
(string) names and RTI-defined handles.  The symbolic names are defined by the
federate initialization file, $RTI_CONFIG/[federation name].fed.

These methods do not alter the internal state of RTI, therefore they may be called
from inside of other RTIambassador methods (such as RTIambassador::tick.)

RETURN VALUES
If the handle or symbolic name is valid within the context of the current federation
execution, these methods return the appropriate converted value.

If a method returns a string value, the caller is responsible for freeing the associated
storage and may do so at its leisure.

EXCEPTIONS
RTI::AttributeNotDefined - The specified attribute handle is not valid in the context
of the specified object class.

RTI::ConcurrentAccessAttempted - These methods are safe for reentrance into the
RTI ambassador; this exception is not thrown.

RTI::FederateDoesNotExist - No federate with the specified federate handle or
federate name is currently joined in the federation execution.



RTI 1.0 Programmer’s Guide

164

RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::InteractionClassNotDefined - The specified interaction class handle is not valid
in the context of the current federation execution.

RTI::InteractionParameterNotDefined - The specified parameter handle is not valid
in the context of the specified interaction class.

RTI::NameNotFound - The symbolic name does not correspond to a handle of the
requested type.

RTI::ObjectClassNotDefined - The specified object class handle is not valid in the
context of the current federation execution.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

RTI::SpaceNotDefined - The specified space handle is not valid in the context of the
current federation execution.

RTI::UnimplementedService - This service is not implemented in 1.0.

SEE ALSO
RTIambassador::joinFederationExecution RTI::AttributeHandleSet,
RTI::AttributeHandleValuePairSet, RTI::FederateHandleSet,
RTI::ParameterHandleValuePairSet



RTI 1.0 Programmer’s Guide

165

3.7.2 Set Time Regulating
NAME

turnRegulationOn, turnRegulationOnNow, turnRegulationOff - specify whether or
not the federate wishes to participate in the regulation of federation time

HLA INTERFACE SPECIFICATION SERVICE
8 .11  - RTI Support Services (federate initiated)

SYNOPSIS
void
RTIambassador::turnRegulationOn ( )
 throw (
   RTI::FederationTimeAlreadyPassed,
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

RTI::FederationTime
RTIambassador::turnRegulationOnNow ( )
 throw (
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

void
RTIambassador::turnRegulationOff ( )
 throw (
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

DESCRIPTION
These methods allow the federate to specify whether its logical time should be
considered in the determination of the federation's lower-bound time stamp
(LBTS), i.e. the greatest time-stamp such that the federation can guarantee that no
time-stamp ordered messages will be delivered with an earlier time-stamp.

RTIambassador::turnRegulationOnNow sets the federate's logical time to the
current federation LBTS before turning time regulation on. If
RTIambassador::turnRegulationOn is used instead, the federate must be sufficiently
advanced in time that it will not generate time-stamp ordered messages that will be
in the federation's past (i.e. the federate's logical time plus its lookahead must not
be less than the federation LBTS.)  Note that not all updates and interactions sent by



RTI 1.0 Programmer’s Guide

166

a time-regulating federate are necessarily time-stamp ordered; the ordering is
determined on a per-attribute or per-interaction basis based on the definitions in the
federation FED file ($RTI_CONFIG/[federation name].fed) or dynamically
specified by the federate via RTIambassador::changeAttributeOrderType or
RTIambassador::changeInteractionOrderType.

If a federate is not time-regulating, its logical time will not be considered in the
determination of the federation LBTS, and all updates and interactions sent by the
federate will be processed receive-order, regardless of their individual ordering
policies.

RETURN VALUES
A non-exceptional return indicates that the federate has successfully indicated its
desire to participate or not participate in the regulation of federation time.

RTI::RTIambassador::turnRegulationOnNow returns the new federate logical time,
i.e. the current value of the federation's lower-bound time stamp.

By default, federates are not time regulating.

EXCEPTIONS
RTI::FederationTimeAlreadyPassed - The federate cannot turn time regulation on
because it would be possible for it to generate time-stamp ordered messages in the
federation's past; it must advance in time, use
RTIambassador::turnRegulationOnNow instead, or specify a greater lookahead.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTIambassador::changeAttributeOrderType,
RTIambassador::changeInteractionOrderType,
RTIambassador::setTimeConstrained, RTIambassador::requestLBTS,
RTIambassador::requestFederateTime, RTIambassador::setLookahead,
RTIambassador::requestLookahead, RTIambassador::timeAdvanceRequest



RTI 1.0 Programmer’s Guide

167

3.7.3 Set Time Constrained
NAME

setTimeConstrained - specify whether or not the federate wishes to receive
updates/interactions in time-stamped order

HLA INTERFACE SPECIFICATION SERVICE
8 .12  - RTI Support Services (federate initiated)

SYNOPSIS
void
RTIambassador::setTimeConstrained (
  RTI::Boolean state
)
 throw (
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

ARGUMENTS
   state   

whether or not the federate wishes to be time constrained.

DESCRIPTION
This method allows the federate to dynamically specify whether or not RTI should
take time into consideration when determining when to present events to the
federation.  If a federate is not time-constrained, all incoming events are processed
in receive-order, i.e. they are immediately made available for processing by an
RTIambassador::tick service call.  Events only become eligible for presentation to a
time constrained federate when it can be guaranteed that no time-stamp-ordered
events with a lower time-stamp will be received.  This ordering only applies to
events that are designated by the sender as being time-stamp-ordered; events
designated as receive-ordered will always be made eligible for presentation
immediately.

Turning time constraints on affects only events received subsequently; it does not
affect any time-stamp-ordered events that may have already been received and
placed in the receive-order queue.

Federates are non-time-constrained by default.

RETURN VALUES
A non-exceptional return indicates that the federate's time constraints have been
turned on or off as requested.

EXCEPTIONS
RTI::FederationExecutionDoesNotExist - The RTI does not have a federation
executive registered for the given federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the



RTI 1.0 Programmer’s Guide

168

RTIambassador; most likely caused by a call to an RTI ambassador method from
inside a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTIambassador::changeAttributeOrderType,
RTIambassador::changeInteractionOrderType, RTIambassador::turnRegulationOn,
RTIambassador::tick, RTIambassador::timeAdvanceRequest



RTI 1.0 Programmer’s Guide

169

3 .7 .4  T ick
NAME

tick - turn control over to RTI for a brief time to do internal processing and provide
one notification to the federate ambassador

HLA INTERFACE SPECIFICATION SERVICE
8 .13  - RTI Support Services (federate initiated)

SYNOPSIS
RTI::Boolean
tick ( )
 throw (
   RTI::SpecifiedSaveLabelDoesNotExist,
   RTI::ConcurrentAccessAttempted,
   RTI::RTIinternalError
 )

A variation allows the federate to specify the amount of (wallclock) time to be
consumed by the tick:

RTI::Boolean
tick (
  RTI::TickTime minimum
  RTI::TickTime maximum
)
 throw (
   RTI::SpecifiedSaveLabelDoesNotExist,
   RTI::ConcurrentAccessAttempted,
   RTI::RTIinternalError
 )

ARGUMENTS
     minimum     

minimum amount of time to be consumed by the tick.

     maximum     
maximum amount of time to be consumed by the tick.

DESCRIPTION
Most callbacks made to the federate ambassador are stimulated by this service; most
invocations of RTIambassador::tick will result in one notification being delivered to
the federate (some may result in zero or more than one.)  These notifications may be
the result of messages received from remote federates or may be bookkeeping
notifications queued by the local federate's RTI ambassador.  Even if the federate
does not expect to receive any notifications, it is important to tick RTI periodically
to allow it to perform internal bookkeeping functions (e.g. draining incoming
buffers, sending out periodic Management Object Model updates, etc.)

If the federate is not time-constrained, RTI events (i.e. updates, interactions, and
deletions) will be delivered to the federate as soon as possible.  If the federate is
time-constrained, events will be delivered while a time-advancement service (e.g.
RTIambassador::nextEventRequest) is in progress. Time-constrained federates can



RTI 1.0 Programmer’s Guide

170

also elect to process receive-ordered events outside of a time-advancement service
by using the RTIambassador::dequeueFIFOasynchronously service.

If the federate provides a minimum and maximum time value, RTIambassador::tick
will block for a time no less than minimum and no greater than maximum seconds.
This method of suspending execution is preferable to signal-based mechanisms and
sleeps, as it allows RTI to continue processing in the meantime.

RTI ambassador functions, with the exception of the handful or reentrant support
functions, may not be invoked from within callbacks triggered by
RTIambassador::tick; such an attempt will result in an
RTI::ConcurrentAccessAttempted exception.

RETURN VALUES
A non-exceptional return indicates that RTI is most appreciative of being given the
opportunity to perform its necessary functions, and has possibly delivered one or
more notifications to the federate via the federate ambassador.

EXCEPTIONS
RTI::SpecifiedSaveLabelDoesNotExist - The specified save label does not
correspond to an existing labelled saved state.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
FederateAmbassador::timeAdvanceGrant, RTIambassador::updateAttributeValues,
FederateAmbassador::discoverObject, FederateAmbassador::removeObject,
FederateAmbassador::receiveInteraction, RTIambassador::joinFederationExecution,
RTIambassador::dequeueFIFOasynchronously



RTI 1.0 Programmer’s Guide

171

3.7.5 dequeueFIFOasynchronously
NAME

dequeueFIFOasynchronously - specify whether or not the federate wishes to
process receive-order events when no outstanding time-advance service is in
progress

HLA INTERFACE SPECIFICATION SERVICE
8 .14  - RTI Support Services (federate initiated)

SYNOPSIS
#include <RTI.hh>

void
dequeueFIFOasynchronously (
  RTI::Boolean theSwitch
)
 throw (
   RTI::FederateNotExecutionMember,
   RTI::ConcurrentAccessAttempted,
   RTI::SaveInProgress,
   RTI::RestoreInProgress,
   RTI::RTIinternalError
 )

DESCRIPTION
This service allows the federate to specify whether or not it wishes to process
receive-ordered events in the absence of an outstanding time-advance service.  This
is only meaningful for time-constrained federates, as non-time-constrained federates
always process events as soon as possible.

A true setting will result in receive-ordered events being delivered to the federate as
soon as possible in response to a RTIambassador::tick invocation.  A false setting
(the default) will result in receive-ordered events being queued until the federate
initiates a time-advancement service (e.g. RTIambassador::timeAdvanceRequest.)

RETURN VALUES
A non-exceptional return value indicates that the federate has reset its asynchronous
dequeue preference.

EXCEPTIONS
RTI::FederateNotExecutionMember - The RTI ambassador is not currently
associated with a federation execution.

RTI::ConcurrentAccessAttempted - An attempt has been made to reenter the RTI
ambassador; most likely caused by a call to an RTI ambassador method from inside
a FederateAmbassador callback method invoked by RTIambassador::tick.

RTI::SaveInProgress - The attempted action would have resulted in a change in the
internal state of the RTI, which is not permitted during a "save" operation.

RTI::RestoreInProgress - The attempted action would have resulted in a change in
the internal state of the RTI, which is not permitted during a "restore" operation.



RTI 1.0 Programmer’s Guide

172

RTI::RTIinternalError - An internal error has occurred in RTI; consult the federate
log file for more details.

SEE ALSO
RTIambassador::setTimeConstrained, RTIambassador::tick,
RTIambassador::timeAdvanceRequest

4. Programming with the RTI

This section will take you through examples of applications using the 1.0 RTI.  The source code to each of
the examples can be found in $RTI_HOME/demo.  The Hello World and Jager applications have been
developed to aid in understanding and using the 1.0 RTI.

4.1 Hello World

The Hello World  application is a simple HLA federate that simulates an increase in population over time.
It registers one instance of the HLA object class Country and updates its name and population attributes as
they change over time.  To be true to its name Hello World periodically sends an interaction of type
Communication.  This communication causes all receiving federates to print the message (“Hello World!”)
to standard output.  This tutorial describes the Hello World SOM and FOM, the Federation Execution Data,
how to run the federate, and the source code that relates to using the RTI.  Each of the HLA services used in
Hello World is listed in Table 4-4-1: HLA Services Used in Hello World.

Table 4-4-1: HLA Services Used in Hello World

Federation
Management

Declaration
Management

Object
Management

Time
Management

Ownership
Management

CreateFederation PublishObjectClass RequestId TimeAdvanceRequest
JoinFederation PublishInteractionClass RegisterObject TimeAdvanceGrant
ResignFederation SubscribeObjectClassAttribute UpdateAttributeValues
DestroyFederation SubscribeInteractionClass DiscoverObject

ControlUpdates ReflectAttributeValues
ControlInteractions SendInteraction

ReceiveInteraction
DeleteObject
RemoveObject

4.1.1 Simulation Object Model (SOM)

The SOM describes the public data that an application can communicate to the Run-Time Infrastructure.
The Hello World SOM has one object class Country and one interaction class Communication. Table 4-4-
2: Hello World Object Class Structure shows the OMT Object Class Structure table for the Hello World
Federation.

Table 4-4-2: Hello World Object Class Structure

Object Class Structure Table
Country (PS)



RTI 1.0 Programmer’s Guide

173

The Communication interaction is initiated by the locally simulated Country object in each federate and is
received by all other federate.  The OMT Interaction table is shown in Table 4-4-3: Hello World Object
Interaction Table.

Table 4-4-3: Hello World Object Interaction Table

Interaction
Structure

Initiating Object Receiving Object Interaction
Parameters

Init /  Sense/
React

Class Affected
Attributes

Class Affected
Attributes

Communication Country None Country None Message

The data communicated between federates in the Hello World federation is described in Table 4-4-4: Hello
World Attribute/Parameter Table.  The Country object class has attributes for the name and the population
of the country.  The Communication interaction class has one parameter that stores the message being
communicated.

Table 4-4-4: Hello World Attribute/Parameter Table

Object/Interaction Attribute/Parameter Data-type Cardinality Units . . .
Country Name string 1 None ...

Population double 1 None ...
Communication Message string 1 None ...

As defined in the Object Model Template, the Data Structure and Enumeration tables are part of the
Attribute/Parameter table.  However, since the Hello World federate does not use enumerations or complex
types they are not depicted here.

4.1.2 Federation Object Model (FOM)

The FOM is the subset of each SOM that will participate in a given federation.  Since the Hello World
federation is comprised of only Hello World federates, the FOM is the same as the Hello World SOM.

4.1.3 Federation Execution Data (FED)

The Federation Execution Data (FED) specifies the FOM object & interaction class hierarchies and the
attributes and parameters at each level.  The transport and ordering for object attributes and interaction
classes are also specified. The FED for Hello World is shown in Figure 4-8: Hello World Federation
Execution Data (FED).  The FED must be consistent across an entire federation.  Users should take special
care to ensure that the same FED file is being used by each federate since changes in attribute/parameter or
class orders will cause an inconsistent run-time enumeration of these types.

(fed
(objects

(class Country
(attribute Name FED_BEST_EFFORT FED_RECEIVE)
(attribute Population FED_BEST_EFFORT FED_RECEIVE)

)



RTI 1.0 Programmer’s Guide

174

)
(interactions

(class Communication FED_RELIABLE FED_RECEIVE
(parameter Message)

)
)

)

Figure 4-8: Hello World Federation Execution Data (FED)

Note: The MOM object and interaction classes have been omitted from this figure for simplicity.  MOM
classes must be in the FED file; otherwise, an exception will occur.

4.1.4 Running the Application

The Hello World application takes two command line arguments that specify the name of the federate’s
locally simulated Country object and the initial value of the Country’s population attribute.  In addition, a
third argument can be provided to limit the number of cycles the simulation event loop will perform.  See
Figure 4-9: Hello World: Sample Output of the Application.

> helloWorld
usage: helloWorld <Country Name> <Initial Population> [<Number of Cycles>]

> helloWorld US 100 20

helloWorld: Federate Handle = 1
Start updates for unknown class: 3
Start interaction for unknown class: 4
Turning Country.Name Updates ON.
Turning Country.Population Updates ON.
Turning Communication Interactions ON.
Country[0] Name: US Population: 100
Country[0] Name: US Population: 101
Country[0] Name: US Population: 102.01
Country[0] Name: US Population: 103.03
Country[0] Name: US Population: 104.06
Country[0] Name: US Population: 105.101
Country[0] Name: US Population: 106.152
Country[0] Name: US Population: 107.214
Country[0] Name: US Population: 108.286
Country[0] Name: US Population: 109.369
Country[0] Name: US Population: 110.462
Country[0] Name: US Population: 111.567
Country[0] Name: US Population: 112.683
Country[0] Name: US Population: 113.809
Country[0] Name: US Population: 114.947
Country[0] Name: US Population: 116.097
Country[0] Name: US Population: 117.258
Country[0] Name: US Population: 118.43
Country[0] Name: US Population: 119.615
Country[0] Name: US Population: 120.811
Exiting helloWorld.

Figure 4-9: Hello World: Sample Output of the Application



RTI 1.0 Programmer’s Guide

175

4.1.5 Stepping Through the Application

This section will take you through the Hello World C++ source code which is comprised of three source
(.cc) files and two header (.hh) files.  Hello World  defines one federate specific class that contains the
majority of the code to model and maintain the state of all instances of Country class.  This class is defined
in Country.hh and implemented in Country.cc.  The FederateAmbassador has been sub-classed to provide
the RTI with a mechanism to invoke RTI initiated services on the HelloWorld federate.   This class is
defined in HwFederateAmbassador.hh and is  implemented in HwFederateAmbassador.cc.  The file
helloWorld.cc contains the main() routine and is where the federate’s event loop is located.  It is described in
the following paragraphs.

4.1.5.1 Instantiating the RTI Objects

The RTI objects that provide the interface for the RTI and the federate must be instantiated to participate in
an HLA federation execution.  The RTI Ambassador is the interface the federate uses to invoke the HLA
services.  The Federate Ambassador is the interface the RTI uses to inform the federate of responses to
requests as well as object attribute updates and interactions from remote federates.  See Figure 4-10:
HelloWorld: Initializing the RTI Objects for

   try
   {
      //------------------------------------------------------
      // Create RTI objects
      //
      // The federate communicates to the RTI through the RTIambassador
      // object and the RTI communicates back to the federate through
      // the FederateAmbassador object.
      //------------------------------------------------------
      RTI::RTIambassador       rtiAmb;         // libRTI provided
      HwFederateAmbassador     fedAmb;         // User-defined
      .
      .
      .
   }
   catch ( RTI::Exception& e )
   {
      cerr << "Error:" << &e << endl;
      return -1;
   }

Figure 4-10: HelloWorld: Initializing the RTI Objects

4.1.5.2 Creating the Federation Execution

Once the RTI objects are instantiated, a federation execution must be created that a group of federates can
join to participate in a distributed simulation.  This service will attempt to register the named federation
execution with the RTI Executive (rtiexec).  Figure 4-11: HelloWorld: Creating the Federation Execution
shows the source code invoking this service.  Note: The 1.0 RTI requires that the RTI executive be running
on a well known host on a well known port.  The 1.0 library (libRTI) consults the RTI.rid file located in
the directory specified by the RTI_CONFIG environment variable to determine the name of the host the
RTI executive process runs on and the port it communicates through.



RTI 1.0 Programmer’s Guide

176

When a federate creates the federation execution, the $RTI_HOME/bin/fedex.sh process is executed on the
localhost.  The RTI_HOME environment variable must be set to the root of the RTI 1.0 distribution tree in
the federate environment to allow the federate to execute the fedex process.

Note: Each federation execution must have a unique name.  This will be apparent when the Join Federation
Execution service is viewed.

      try
      {
         //------------------------------------------------------
         // A successful createFederationExecution will cause
         // the fedex process to be executed on this machine.
         //------------------------------------------------------
         rtiAmb.createFederationExecution( fedExecName );
      }
      catch ( RTI::FederationExecutionAlreadyExists& e )
      {
         cerr << "Note: Federation execution already exists." << &e << endl;
      }
      catch ( RTI::Exception& e )
      {
         cerr << "Error:" << &e << endl;
      }

Figure 4-11: HelloWorld: Creating the Federation Execution

4.1.5.3 Joining the Federation Execution

A federate must join an existing federation execution to participate in the distributed simulation.  Invocation
of this service will cause the RTIambassador to establish communication channels with the named
federation execution.       catch (RTI::FederateAlreadyExecutionMember& e)
      {
         cerr << "Error: " << myCountry->GetName()
              << " already exists in the Federation Execution "
              << fedExecName << "." << endl;
         cerr << &e << endl;
         return -1;
      }
      catch (RTI::FederationExecutionDoesNotExist& e)
      {
         cerr << "Error: " << fedExecName << " Federation Execution "
              << "does not exists."<< endl;
         cerr << &e << endl;
         return -1;
      }
      catch (RTI::CouldNotOpenFED& e)
      {
         cerr << "Error: The FED file $RTI_CONFIG/" << fedExecName << ".fed"
              << "could not be opened."
              << endl;
         cerr << &e << endl;
         return -1;
      }
      catch (RTI::ErrorReadingFED& e)
      {
         cerr << "Error: The FED file $RTI_CONFIG/" << fedExecName << ".fed"



RTI 1.0 Programmer’s Guide

177

              << "can not be properly read - please check the format."
              << endl;
         cerr << &e << endl;
         return -1;
      }
      catch ( RTI::Exception& e )
      {
         cerr << "Error:" << &e << endl;
      }

Figure 4-12: HelloWorld: Joining a Federation Execution shows the source code that invokes this service.

Note:  A <Federation Execution Name>.fed file must exist in the directory specified by the RTI_CONFIG
environment variable.  This file contains FOM information giving the object and interaction class
structures and attribute/parameter names.  Additionally, default attribute and interaction transport and
ordering information is given.  For a more complete description of the FED, see 2.4.2 Federation Execution
Data (FED).

      try
      {
         federateId = rtiAmb.joinFederationExecution( myCountry->GetName(),
                                                      fedExecName,
                                                      &fedAmb);
      }
      catch (RTI::FederateAlreadyExecutionMember& e)
      {
         cerr << "Error: " << myCountry->GetName()
              << " already exists in the Federation Execution "
              << fedExecName << "." << endl;
         cerr << &e << endl;
         return -1;
      }
      catch (RTI::FederationExecutionDoesNotExist& e)
      {
         cerr << "Error: " << fedExecName << " Federation Execution "
              << "does not exists."<< endl;
         cerr << &e << endl;
         return -1;
      }
      catch (RTI::CouldNotOpenFED& e)
      {
         cerr << "Error: The FED file $RTI_CONFIG/" << fedExecName << ".fed"
              << "could not be opened."
              << endl;
         cerr << &e << endl;
         return -1;
      }
      catch (RTI::ErrorReadingFED& e)
      {
         cerr << "Error: The FED file $RTI_CONFIG/" << fedExecName << ".fed"
              << "can not be properly read - please check the format."
              << endl;
         cerr << &e << endl;
         return -1;
      }
      catch ( RTI::Exception& e )
      {
         cerr << "Error:" << &e << endl;



RTI 1.0 Programmer’s Guide

178

      }

Figure 4-12: HelloWorld: Joining a Federation Execution

4.1.5.4 Setting Time Management

This version of Hello World allows each HelloWorld federate to progress in time as fast as it possibly can.
The setTimeConstrained() service toggles whether or not the federate’s time advancement is constrained by
other federates’ time and TSO queue.  The turnRegulationOff() service informs the RTI that the federate’s
time and TSO queue do not have to be considered by other federates’ time advancement.  See Figure 4-13:
HelloWorld: Setting Time Management.

      //------------------------------------------------------
      // Set the Time Management parameters:
      // This version of HelloWorld operates under wall-clock
      // time (under its own control). This means that it should
      // not be constrained or regulating.
      //------------------------------------------------------
      try
      {
         rtiAmb.setTimeConstrained( RTI::RTI_FALSE );
         rtiAmb.turnRegulationOff();
      }
      catch ( RTI::Exception& e )
      {
         cerr << "Error:" << &e << endl;
      }

Figure 4-13: HelloWorld: Setting Time Management

4.1.5.5 Run-Time Type Identification

1.0 does not know anything about a federate’s data; therefore, it uses a Meta Object Protocol MOP to
enumerate the types at run-time.  Since the handles assigned to object and interaction classes, attributes, and
parameters are defined at run-time, the application developer must use the RTI ancillary services to retrieve
these run-time handles.

The Country::Init() method queries the RTI for the handles assigned to its object and interaction classes,
attributes, and parameters.  The 1.0 RTI will consistently generate the same handles for the same FED
input file; however, this should not be relied upon during coding.  (This means do not hard code values for
the ObjectClassHandle, AttributeHandle, InteractionClassHandle, or ParameterHandle.)  Figure 4-14:
HelloWorld: Run-Time Type Identification Example shows the use of the RTI services that query the RTTI
values for FED data.

Note:  There are better ways to perform the mapping between the RTI RTTI and the simulation’s compile
time types.  See the Jager tutorial for one approach.

void Country::Init( RTI::RTIambassador* rtiAmb )
{
   ms_rtiAmb = rtiAmb;

   if ( ms_rtiAmb )



RTI 1.0 Programmer’s Guide

179

   {
      //------------------------------------------------------
      // Get the RTTI (Meta-Object Protocol MOP) handles
      //
      // Since the 1.0 RTI does not know anything about your data
      // and thus uses Run-Time Type Identification we must ask the
      // RTI what to call each of our data types.
      //------------------------------------------------------
      ms_countryTypeId  = ms_rtiAmb->getObjectClassHandle(ms_countryTypeStr);
      ms_nameTypeId     = ms_rtiAmb->getAttributeHandle( ms_nameTypeStr,
                                                         ms_countryTypeId);
      ms_popTypeId      = ms_rtiAmb->getAttributeHandle( ms_popTypeStr,
                                                         ms_countryTypeId);
   }
}

 Figure 4-14: HelloWorld: Run-Time Type Identification Example

4.1.5.6 Publishing and Subscribing to Classes of Data

The federate needs to tell the RTI the types of object class attributes and interaction classes it can produce
and would like to receive.  In the Hello World program all data types that are published are also instantiated
and updated.

Note: Each time an object or interaction class is subscribed or published it replaces the
subscription/publication for that class.  In most reasonable applications the publication and subscription
would be broken up into two different methods. Figure 4-15: HelloWorld: Publication and Subscription
Example shows the usage of the RTI publication and subscription services.

void Country::PublishAndSubscribe()
{
   if ( ms_rtiAmb )
   {
      //------------------------------------------------------
      // To actually subscribe and publish we need to build
      // an AttributeHandleSet that contains a list of
      // attribute type ids (AttributeHandle).
      //------------------------------------------------------
      RTI::AttributeHandleSet *countryAttributes;
      countryAttributes = RTI::AttributeHandleSetFactory::create(2);

      countryAttributes->add( ms_nameTypeId );
      countryAttributes->add( ms_popTypeId );

      //------------------------------------------------------
      // I like to subscribe first because, in 1.0 RTI, publish
      // causes an immediate ControlUpdates service request
      // and I like to keep as few events in the queue (waiting
      // for tick) as possible for as little time as possible.
      //------------------------------------------------------
      ms_rtiAmb->subscribeObjectClassAttribute( ms_countryTypeId,
                                                *countryAttributes );
      ms_rtiAmb->publishObjectClass( ms_countryTypeId,
                                     *countryAttributes);

      countryAttributes->empty();



RTI 1.0 Programmer’s Guide

180

      delete countryAttributes;   // Deallocate the memory

      //------------------------------------------------------
      // Same as above for interactions
      //------------------------------------------------------

      // Get RTTI info
      ms_commTypeId    = ms_rtiAmb->getInteractionClassHandle( ms_commTypeStr );
      ms_commMsgTypeId = ms_rtiAmb->getParameterHandle( ms_commMsgTypeStr,
                                                        ms_commTypeId);

      // Declare my Interaction interests
      ms_rtiAmb->subscribeInteractionClass( ms_commTypeId );
      ms_rtiAmb->publishInteractionClass( ms_commTypeId );

   }
}

Figure 4-15: HelloWorld: Publication and Subscription Example

4.1.5.7 Instantiating HLA Objects

Each Hello World federate creates one HLA object instance of class Country and registers it with the RTI.
The Country::Country() constructor method does not perform the id request and registerObject request since
Country objects are also instantiated upon discovery. Figure 4-16: HelloWorld: Instantiation of HLA
Objects shows the usage of the Request ID and Register Object services.

void Country::Register()
{
   if ( m_rtiAmb )
   {
      //------------------------------------------------------
      // Instantiate my country object then register it with
      // the RTI.  Registering an object with the RTI allows
      // the object to be discovered by other federates in the
      // federation execution.
      //
      // Note: Discovery happens after an object is registered
      //       and the subscribed attributes are updated.
      //------------------------------------------------------
      RTI::ObjectIDcount numObjects(1);

      m_rtiAmb->requestID( numObjects, m_instanceId, m_instanceId );
      m_rtiAmb->registerObject( this->GetCountryRtiId(),
                                m_instanceId );
   }
}

Figure 4-16: HelloWorld: Instantiation of HLA Objects

4.1.5.8 Simulation Event Loop

The Hello World simulation cycles through the event loop the number of times specified in the command
line arguments.  In each cycle the federate requests a time advance, ticks the RTI until the time advance is



RTI 1.0 Programmer’s Guide

181

granted, and then prints the current state of all known Country objects and updates the local Country
object’s state based on the time advance granted.  

4.1.5.8.1 Advancing Time

The HelloWorld federate uses the timeAdvanceRequest() service.  This service will provide a full grant to
the requested time. Figure 4-17: HelloWorld: Time Advance Request Example shows the usage for the
timeAdvanceRequest() service.

      int counter = 0;

      while ( counter++ < numerOfTicks )
      {
         //------------------------------------------------------
         //
         // Advance to next time step (next year), then calculate the
         // new population.
         //
         // The RTI will asynchronously grant a time advance to us and
         // it may or may not be the entire time step we asked for.
         // This depends on the ordering specified in the RID and the
         // time advance service used.  Since this version of
         // Hello World uses timeAdvanceGrant it will be the entire
         // time step we asked for.  Other time advance methods such
         // nextEventRequest may give incremental grants.
         //------------------------------------------------------
         try
         {
            timeAdvGrant = RTI::RTI_FALSE;
            rtiAmb.timeAdvanceRequest(currentTime + timeStep);
         }
         catch ( RTI::Exception& e )
         {
            cerr << "Error:" << &e << endl;
         }

 Figure 4-17: HelloWorld: Time Advance Request Example

4.1.5.8.2 Ticking the RTI

Invoking the RTIambassador::tick() method is how the federate turns control over to the RTI to perform
internal synchronization operations and to invoke the RTI initiated services on the FederateAmbassador.
This section has several subsections that describe the HwFederateAmbassador methods that are implemented
in the Hello World application.

The RTIambassador::tick() method processes the next event in the RTI’s internal queue and returns
RTI::RTI_TRUE if additional events exist that need to be processed.  Figure 4-18: HelloWorld: Providing
Control to the RTI shows the RTIambassdor::tick() method being used such that all available events are
processed (not just one).

         while (!timeAdvGrant)
         {
            //------------------------------------------------------



RTI 1.0 Programmer’s Guide

182

            //
            // Tick will turn control over to the RTI so that it can
            // process an event.  This will cause an invocation of one
            // of the federateAmbassadorServices methods.
            //
            // Be sure not to invoke the RTIambassadorServices from the
            // federateAmbassadorServices; otherwise, a ConcurrentAccess
            // exception will be thrown.
            //
            //------------------------------------------------------
            int eventsToProcess = RTI::RTI_TRUE;

            while ( eventsToProcess )
            {
               eventsToProcess = rtiAmb.tick();
            }
         }

Figure 4-18: HelloWorld: Providing Control to the RTI

4.1.5.8.2.1 Control Updates

The Control Updates service allows the RTI to inform the federate when an object class the federate
published is needed or is not needed by the federation.  This allows the federate to only send attribute
updates to the RTI when the federation requires them.

When the RTI invokes this service on the Hello World federate, the application sets a flag for each attribute
to the appropriate value.  During the Country object’s update method, these flags are checked to make sure
the federation needs the data. Figure 4-19: HelloWorld: Control Updates Example shows the usage for this
service.

Note: Control Updates is hard-wired in 1.0 such that the RTI tells every federate to update all classes it
publishes.

void HwFederateAmbassador::startUpdates(ObjectClassHandle   theClass,
                                        const AttributeHandleSet& theAttributes)
     throw (RTI::ObjectClassNotPublished,
            RTI::AttributeNotPublished,
            RTI::FederateInternalError)
{
   //-----------------------------------------------------------------
   // Gets called immediately in 1.0 for all classes you publish.
   //-----------------------------------------------------------------
   if ( theClass == Country::GetCountryRtiId() )
   {
      Country::SetUpdateControl( RTI::RTI_TRUE, theAttributes );
   }
   else
   {
      cerr << "Start updates for unknown class: " << theClass << endl;
   }
}

void HwFederateAmbassador::stopUpdates(ObjectClassHandle  theClass,
                                       const AttributeHandleSet& theAttributes)



RTI 1.0 Programmer’s Guide

183

     throw (RTI::ObjectClassNotPublished,
            RTI::AttributeNotPublished,
            RTI::FederateInternalError)
{
   //-----------------------------------------------------------------
   // Never gets called in 1.0 but we will implement it for good form.
   //-----------------------------------------------------------------
   if ( theClass == Country::GetCountryRtiId() )
   {
      Country::SetUpdateControl( RTI::RTI_FALSE, theAttributes );
   }
   else
   {
      cerr << "Stop updates for unknown class: " << theClass << endl;
   }
}

void Country::SetUpdateControl( RTI::Boolean status,
                 const RTI::AttributeHandleSet& theAttrHandles )
{
   //-----------------------------------------------------------------
   // Note: This is hard-wired in 1.0 - meaning all things a
   //       federate publishes will cause a start control update.
   //-----------------------------------------------------------------
   RTI::AttributeHandle attrHandle;

   //-----------------------------------------------------------------
   // We need to iterate through the AttributeHandleSet
   // to extract each AttributeHandle.  Based on the type
   // specified ( the value returned by getHandle() ) we need to
   // set the status of whether we should send this type of data.
   //-----------------------------------------------------------------
   for ( int i = 0; i < theAttrHandles.size(); i++ )
   {
      attrHandle = theAttrHandles.getHandle( i );
      if ( attrHandle == Country::GetPopulationRtiId() )
      {
         // Turn population updates on/off
         ms_sendPopulationAttrUpdates = status;

         char *pStr = ms_sendPopulationAttrUpdates ? "ON" : "OFF";

         cout << "Turning Country.Population Updates "
              << pStr << "." << endl;
      }
      else if ( attrHandle == Country::GetNameRtiId() )
      {
         // Turn name updates on/off
         ms_sendNameAttrUpdates = status;

         char *pStr = ms_sendNameAttrUpdates ? "ON" : "OFF";

         cout << "Turning Country.Name Updates "
              << pStr << "." << endl;
      }
   }
}



RTI 1.0 Programmer’s Guide

184

Figure 4-19: HelloWorld: Control Updates Example

4.1.5.8.2.2 Control Interactions

The Control Interactions service allows the RTI to inform the federate when an interaction class the federate
published is needed or is not needed by the federation.  This allows the federate to only send interactions to
the RTI when the federation requires them.

When the RTI invokes this service on the Hello World federate, the application sets a flag for each
interaction class to the appropriate value.  During the Country object’s update method, these flags are
checked to make sure the federation needs the data. Figure 4-20: HelloWorld: Control Interactions Example
shows the usage for this service.

Note: Control Interactions is hard-wired in 1.0 such that the RTI tells every federate to send all interaction
classes it publishes.

void HwFederateAmbassador::startInteractionGeneration
        (InteractionClassHandle theClass)
     throw (RTI::InteractionClassNotPublished,
            RTI::FederateInternalError)
{
   //-----------------------------------------------------------------
   // Gets called immediately in 1.0 for all classes you publish.
   //-----------------------------------------------------------------
   Country::SetInteractionControl( RTI::RTI_TRUE, theClass );
}

void HwFederateAmbassador::stopInteractionGeneration
        (InteractionClassHandle theClass)
     throw (RTI::InteractionClassNotPublished,
            RTI::FederateInternalError)
{
   //-----------------------------------------------------------------
   // Never gets called in 1.0 but we will implement it for good form.
   //-----------------------------------------------------------------
   Country::SetInteractionControl( RTI::RTI_FALSE, theClass );
}

void Country::SetInteractionControl( RTI::Boolean status,
                 RTI::InteractionClassHandle theClass )
{
   if ( theClass == Country::GetCommRtiId() )
   {
      // Set a flag here so that I can tell whether I
      // need to send an interaction of this type.
      ms_sendCommInteractions = status;

      char *pStr = ms_sendCommInteractions ? "ON" : "OFF";

      cout << "Turning Communication Interactions "
           << pStr << "." << endl;
   }
   else
   {



RTI 1.0 Programmer’s Guide

185

      // If it gets this far I don't know this type of interaction
      // better let someone know.
      char *pStr = status ? "Start" : "Stop";
      cerr << pStr
           << " interaction for unknown class: " << theClass << endl;
   }
}

Figure 4-20: HelloWorld: Control Interactions Example

4.1.5.8.2.3 Discovering an HLA Object

When an object update occurs that meets a federates subscription, the RTI invokes the discoverObject()
method on the FederateAmbassador.  This method provides the federate with the object ID and the object
class of the discovered object.  HelloWorld instantiates an instance of class Country (after ensuring the
object is of class Country).  This instance is added to the Country extent (a collection of all elements of a
specific type) when the Country::Country() constructor method is invoked. Figure 4-21: HelloWorld:
Discovering an HLA Object shows the usage for this service.

void HwFederateAmbassador::discoverObject( ObjectID              theObject,
                                           ObjectClassHandle     theObjectClass,
                                           FederationTime        theTime,
                                           const UserSuppliedTag theTag,
                                           EventRetractionHandle theHandle)
     throw (RTI::CouldNotDiscover,
            RTI::ObjectClassNotKnown,
            RTI::InvalidFederationTime,
            RTI::FederateInternalError)
{
   cout << "Discovered object " << theObject << endl;

   if ( theObjectClass == Country::GetCountryRtiId() )
   {
      //-----------------------------------------------------------------
      // Instantiate a local Country object to hold the state of the
      // remote object we just discovered.  This instance will get
      // stored in the static extent member data - it will be destructed
      // either when it is removed or when the application exits.
      //-----------------------------------------------------------------
      Country *tmpPtr = new Country( theObject );
   }

   //-----------------------------------------------------------------
   // If not Country type then don't know what to do because all I
   // know about is Country objects.
   //-----------------------------------------------------------------
}

Figure 4-21: HelloWorld: Discovering an HLA Object

4.1.5.8.2.4 Receiving Object Attribute Updates

After an object is discovered, the RTI will provide a federate with the updates of the discovered object’s
attributes.  In this service, the RTI does not provide the type of the object; therefore, the federate must cache



RTI 1.0 Programmer’s Guide

186

the object (type and ID) upon discovery.  Figure 4-22: HelloWorld: Receiving Object Attribute Updates
shows the usage of this service.

Note:  The RTI encodes the attribute value buffer you provide as a bit stream since it doesn’t know
anything about the types of your data.  When the RTI becomes available for additional platforms, this
encoding will need to be supplemented by the federate or by mechanisms provided in future releases of the
RTI.  See 2.3.3 Data Marshaling for a more thorough discussion.

void HwFederateAmbassador::reflectAttributeValues
        ( ObjectID                           theObject,
          const AttributeHandleValuePairSet& theAttributes,
          FederationTime                     theTime,
          const UserSuppliedTag              theTag,
          EventRetractionHandle              theHandle )
     throw (RTI::ObjectNotKnown,
            RTI::AttributeNotKnown,
            RTI::InvalidFederationTime,
            RTI::FederateInternalError)
{
   //-----------------------------------------------------------------
   // Find the Country instance this update is for.  If we can't find
   // it then I am getting data I didn't ask for.
   //-----------------------------------------------------------------
   Country *pCountry = Country::Find( theObject );

   if ( pCountry )
   {
      //-----------------------------------------------------------------
      // Set the new attribute values in this country instance.
      //-----------------------------------------------------------------
      pCountry->Update( theAttributes );
   }
}



RTI 1.0 Programmer’s Guide

187

void Country::Update( const AttributeHandleValuePairSet& theAttributes )
{
   RTI::AttributeHandle attrHandle;
   unsigned long        valueLength;

   // We need to iterate through the AttributeHandleValuePairSet
   // to extract each AttributeHandleValuePair.  Based on the type
   // specified ( the value returned by getHandle() ) we need to
   // extract the data from the buffer that is returned by
   // getValue().
   for ( int i = 0; i < theAttributes.size(); i++ )
   {
      attrHandle = theAttributes.getHandle( i );
      if ( attrHandle == Country::GetPopulationRtiId() )
      {
         // We don't do any encoding when we send the data to
         // the RTI so there is no decoding here.  When we run
         // this over multiple platforms we will have a problem
         // with different endian-ness of platforms.  Either we
         // need to encode the data using something like XDR or
         // provide another mechanism.
         double population;
         theAttributes.getValue( i, (char*)&population, valueLength );
         SetPopulation( (double)population );
      }
      else if ( attrHandle == Country::GetNameRtiId() )
      {
         // Same as above goes here...
         char name[ 1024 ];
         theAttributes.getValue( i, (char*)name, valueLength );
         name[ valueLength ] = NULL;
         SetName( (const char*)name );
      }
   }
}

Figure 4-22: HelloWorld: Receiving Object Attribute Updates

4.1.5.8.2.5 Receiving an Interaction

When an interaction that meets a federates subscription criteria is sent, the RTI will invoke the
receiveInteraction() method on the FederateAmbassador.   In the Hello World application, the
HwFederateAmbassador provides the interaction class handle and the set of parameters to the
Country::Update() method.  This method checks to ensure the type of interaction is Communication and
then extracts the Message parameter to display.  Figure 4-23: HelloWorld: Receiving Interactions shows the
usage for this service.

void HwFederateAmbassador::receiveInteraction
        ( InteractionClassHandle theInteraction,
          const ParameterHandleValuePairSet& theParameters,
          FederationTime theTime,
          const UserSuppliedTag theTag,
          EventRetractionHandle theHandle)
     throw (RTI::InteractionClassNotKnown,
            RTI::InteractionParameterNotKnown,
            RTI::InvalidFederationTime,



RTI 1.0 Programmer’s Guide

188

            RTI::FederateInternalError)
{
   //  Pass the interaction off to the Country class
   // so that it can be processed.
   Country::Update( theInteraction, theParameters );
}

void Country::Update( RTI::InteractionClassHandle theInteraction,
             const RTI::ParameterHandleValuePairSet& theParameters )
{
   if ( theInteraction == Country::GetCommRtiId() )
   {
      RTI::ParameterHandle paramHandle;
      unsigned long        valueLength;

      // We need to iterate through the AttributeHandleValuePairSet
      // to extract each AttributeHandleValuePair.  Based on the type
      // specified ( the value returned by getHandle() ) we need to
      // extract the data from the buffer that is returned by
      // getValue().
      for ( int i = 0; i < theParameters.size(); i++ )
      {
         paramHandle = theParameters.getHandle( i );
         if ( paramHandle == Country::GetMessageRtiId() )
         {
            // We don't do any encoding when we send the data to
            // the RTI so there is no decoding here.  When we run
            // this over multiple platforms we will have a problem
            // with different endian-ness of platforms.  Either we
            // need to encode the data using something like XDR or
            // provide another mechanism.
            char msg[ 1024 ];
            theParameters.getValue( i, (char*)msg, valueLength );
            msg[ valueLength ] = NULL;
            cout << "Interaction: " << msg << endl;
         }
         else
         {
            // There must be an error since there should only be
            // one parameter to Communication.
            cerr << "Error: I seem to have received a parameter for "
                 << "interaction class Communication that I don't "
                 << "know about." << endl;
         }
      }
   }
   else
   {
      cerr << "Received an interaction class I don't know about." << endl;
   }
}

Figure 4-23: HelloWorld: Receiving Interactions

4.1.5.8.2.6 Removing HLA objects



RTI 1.0 Programmer’s Guide

189

The RTI notifies the federate when an object has either been deleted or no longer meets the federate’s
subscription criteria by invoking the removeObject() method on the FederateAmbassador.   The Hello World
application looks up the Country object based on the object ID provided by the RTI.  The resulting
Country object is then deleted.  Figure 4-24: HelloWorld: Removing HLA Objects shows the usage of this
service.

void HwFederateAmbassador::removeObject( ObjectID              theObject,
                                         ObjectRemovalReason   theReason,
                                         FederationTime        theTime,
                                         const UserSuppliedTag theTag,
                                         EventRetractionHandle theHandle )
     throw (RTI::ObjectNotKnown,
            RTI::InvalidFederationTime,
            RTI::FederateInternalError)
{
   //-----------------------------------------------------------------
   // Call the other removeObject method since this should probably
   //  be implemented using default parameter values.
   //-----------------------------------------------------------------
   this->removeObject( theObject, theReason );
}

void HwFederateAmbassador::removeObject( ObjectID              theObject,
                                         ObjectRemovalReason   theReason)
     throw (RTI::ObjectNotKnown,
            RTI::InvalidFederationTime,
            RTI::FederateInternalError)
{
   cout << "Removed object " << theObject << endl;

   Country* pCountry = Country::Find( theObject );

   if ( pCountry )
   {
      delete pCountry;
   }
}

Figure 4-24: HelloWorld: Removing HLA Objects

4.1.5.8.2.7 Receiving a Time Advance Grant

The timeAdvanceGrant() method on the FederateAmbassador is invoked by the RTI in reply to a request for
time advancement.  The Hello World application stores  the time that the RTI has granted in a variable
named grantTime and sets a flag informing the application that the time has changed.  Figure 4-25:
HelloWorld: Receiving a Time Advance Grant shows the usage of this service.

void HwFederateAmbassador::timeAdvanceGrant( FederationTime theTime )
     throw (RTI::InvalidFederationTime,
            RTI::TimeAdvanceWasNotInProgress,
            RTI::FederationTimeAlreadyPassed,
            RTI::FederateInternalError)
{
   grantTime = theTime;
   timeAdvGrant = RTI::RTI_TRUE;



RTI 1.0 Programmer’s Guide

190

}

Figure 4-25: HelloWorld: Receiving a Time Advance Grant

4.1.5.8.3 Updating state and sending data

The final step to the Hello World event loop is to update the state of the Country object by calculating the
new population based on the delta time.  When a Country object’s member data is modified a flag is set that
records that the attribute has changed.  After calculation of the new state, the Country::CreateNvpSet()
method is invoked to create an AttributeHandleValuePairSet that contains each of the changed attributes.
The CreateNvpSet() method checks the changed flags as well as the control update flags to make sure that
1.) the data has changed and 2.) that the federation needs the data.  If both of these tests pass then the
attribute is included in the AttributeHandleValuePairSet.  Figure 4-26: HelloWorld: Updating Country
Objects and Sending Attributes and Interactions shows the usage of this service.

// This is the body of the simulation event loop
         //------------------------------------------------------
         // If a time advance grant occurred and we have been given
         // permission to advance in time then calculate my next state.
         //------------------------------------------------------
         if (grantTime > currentTime)
         {
            //------------------------------------------------------
            // Print state of all countries
            //------------------------------------------------------
            Country* pCountry( NULL );
            for ( int i = 0; i < Country::ms_extentCardinality; i++ )
            {
               pCountry = Country::ms_countryExtent[ i ];

               if ( pCountry )
               {
                  cout << "Country[" << i << "] " << pCountry << endl;
               }
            }

            myCountry->Update( grantTime );
            currentTime = grantTime;
         }
      } // end while

RTI::AttributeHandleValuePairSet* Country::CreateNVPSet()
{
   RTI::AttributeHandleValuePairSet* pCountryAttributes( NULL );

   // Make sure the RTI Ambassador is set.
   if ( ms_rtiAmb && hasNameChanged && hasPopulationChanged )
   {
      //------------------------------------------------------
      // Set up the data structure required to push this
      // object's state to the RTI.
      //------------------------------------------------------
      RTI::ObjectIDcount numAttributes(2);
      pCountryAttributes = RTI::AttributeSetFactory::create( numAttributes );



RTI 1.0 Programmer’s Guide

191

      if ( ( hasNameChanged == RTI::RTI_TRUE ) &&
           ( ms_sendNameAttrUpdates == RTI::RTI_TRUE ) )
      {
         // We don't do any encoding here even though the data
         // is going over the wire.  When we run this over
         // multiple platforms we will have a problem
         // with different endian-ness of platforms.  Either we
         // need to encode the data using something like XDR or
         // provide another mechanism.
         pCountryAttributes->add( this->GetNameRtiId(),
                                  (char*) this->GetName(),
                                  (strlen(this->GetName())*sizeof(char)) );
      }

      if ( ( hasPopulationChanged == RTI::RTI_TRUE ) &&
           ( ms_sendPopulationAttrUpdates == RTI::RTI_TRUE ) )
      {
         // Same goes here as above...
         pCountryAttributes->add( this->GetPopulationRtiId(),
                                  (char*) &this->GetPopulation(),
                                  sizeof(double) );
      }
   }

   // pCountryAttributes is allocated on the heap and must be
   // deallocated by the federate.
   return pCountryAttributes;
}

void Country::Update( RTI::FederationTime& newTime )
{
   //------------------------------------------------------
   // If a time advance grant occurred and we have been given
   // permission to advance in time then calculate my next state.
   //------------------------------------------------------
   double deltaTime = newTime - this->GetLastTime();

   if ( deltaTime > 0 )
   {
      SetPopulation( GetPopulation() +
                     (GetPopulation()*ms_growthRatePerSec*deltaTime) );
   }

   if ( ms_rtiAmb )
   {
      //------------------------------------------------------
      // Update state of country
      //------------------------------------------------------
      try
      {
         RTI::AttributeHandleValuePairSet* pNvpSet(this->CreateNVPSet());

         // Note: if timeAdvGrant is NULL -> SEGV:
         ms_rtiAmb->updateAttributeValues( this->GetInstanceId(),
                                           *pNvpSet,
                                           newTime, "");
         // Must free the memory



RTI 1.0 Programmer’s Guide

192

         pNvpSet->empty();
         delete pNvpSet;
      }

     catch ( RTI::Exception& e )
     {
        cerr << "Error:" << &e << endl;
     }

      // Periodically send an interaction to tell everyone Hello
      static int periodicMessage = 0;
      if ( (periodicMessage++%100) == 0 )
      {
         RTI::ParameterHandleValuePairSet* pParams( NULL );

         //------------------------------------------------------
         // Set up the data structure required to push this
         // object's state to the RTI.
         //------------------------------------------------------
         RTI::ULong numParams(1);
         pParams = RTI::ParameterSetFactory::create( numParams );

         char *pMessage = "Hello World!";

         pParams->add( this->GetMessageRtiId(),
                       (char*) pMessage,
                       (strlen(pMessage)*sizeof(char)) );
         try
         {
            ms_rtiAmb->sendInteraction( GetCommRtiId(), *pParams, newTime, "" );
         }

       catch ( RTI::Exception& e )
       {
          cerr << "Error:" << &e << endl;
       }

         // Need to free memory
         pParams->empty();
         delete pParams;
      }
   }

   // Set last time to new time
  m_lastTime = newTime;
}

Figure 4-26: HelloWorld: Updating Country Objects and Sending Attributes and
Interactions

4.2 Jager: Another Game Exploiting the RTI (JAGER)

JAGER is a space combat game developed to demonstrate the usage of the 1.0 RTI in a more advance
application.  An HTML document describing the game and a tutorial on how it uses the RTI can be found
in $RTI_HOME/demo/Jager/doc/tutorial.html.



RTI 1.0 Programmer’s Guide

193

5. Troubleshooting

Having troubles?  Please read the following problems and resolutions.

1. Problem: Federate can not connect to rtiexec.
 

> helloWorld US 100 10
RTIexecProxy::start: Can't connect to RTIexec: Connection refused
Error:RTI::RTIinternalError : RTIexecProxy::start: Can't connect to
RTIexec: Connection refused 11000

 
 Resolution: Several configuration errors can cause this problem; the dependencies include

•  RTI_CONFIG environment variable,
•  RTI_EXEC_HOST value in $RTI_CONFIG/RTI.rid,
•  RTI_EXEC_PORT value in $RTI_CONFIG/RTI.rid, and
•  proper execution of rtiexec process: rtiexec <port number>.

Either the rtiexec is not running, the rtiexec is running on the wrong port, the rtiexec is running on the
wrong host, the rtiexec is running on an unreachable host, RTI_EXEC_HOST is improperly set, or
RTI_EXEC_PORT is improperly set.

Check to make sure that 1) the host name and port number are correctly specified in the
$RTI_CONFIG/RTI.rid file, 2) the rtiexec process was executed on the host and port specified, and 3)
the host is reachable ( ping <hostname> ).

2. Problem: RTI_HOME environment variable is not set.  The federate that successfully registers the
federation execution with the rtiexec will attempt to fork the $RTI_HOME/bin/fedex.sh process.  This
attempt will fail if the variable is not set or is improperly set.

 

> helloWorld US 100 10
Error:RTI::RTIinternalError :
RTIambassador::createFederationExecution: RTI_HOME not set 13148
Error: HelloWorld Federation Execution does not exists.
RTI::FederationExecutionDoesNotExist : RTIexecImpl::getFedExByName:
not reserved 12104

 
Resolution: Set the RTI_HOME environment variable to the directory specified during installation
with “/rti” appended to the end.

> setenv RTI_HOME $INSTALL_DIR/rti

3. Problem:RTI_HOME environment variable is incorrectly set. The federate that successfully registers
the federation execution with the rtiexec will attempt to fork the $RTI_HOME/bin/fedex.sh process.
This attempt will fail if the variable is incorrectly set.

 

> helloWorld US 100 10
Error:RTI::RTIinternalError :
RTIambassador::createFederationExecution: exec failed: No such file
or directory 13151
Error: HelloWorld Federation Execution does not exists.



RTI 1.0 Programmer’s Guide

194

RTI::FederationExecutionDoesNotExist : RTIexecImpl::getFedExByName:
not registered 12105
Error: HelloWorld Federation Execution does not exists.
RTI::FederationExecutionDoesNotExist : RTIexecImpl::getFedExByName:
not registered 12105

 
Resolution: Set the RTI_HOME environment variable to the directory specified during installation
with “/rti” appended to the end.

> setenv RTI_HOME $INSTALL_DIR/rti

4. Problem:RTI_CONFIG environment variable is not set. The federate needs to read in the RTI.rid and
<FederationName>.fed files that are located in the RTI_CONFIG directory.

 

> helloWorld US 100 10
RTI_CONFIG environment variable not set!!!
Error:RTI::RTIinternalError : RTI_CONFIG environment variable not set
0

 
Resolution: Set the RTI_CONFIG environment variable to the directory specified during installation
with “/rti/config” appended to the end.

> setenv RTI_HOME $INSTALL_DIR/rti/config

5. Problem:RTI>rid file can not be found.  RTI_CONFIG environment variable is incorrectly set. The
federate needs to read in the RTI.rid and <FederationName>.fed files that are located in the
RTI_CONFIG directory.

 

> helloWorld US 100 10
/home/wrong_dir/RTI.rid: Config file not found
Error:RTI::RTIinternalError : Config file not found 0

 
Resolution: Set the RTI_CONFIG environment variable to the directory specified during installation
with “/rti/config” appended to the end.

> setenv RTI_HOME $INSTALL_DIR/rti/config

6. Problem:Error in syntax of MOM portion of the FED file.  This generally occurs when an name is
misspelled or not specified in the file.

 

> helloWorld US 100 10
Error:RTI::RTIinternalError : Error in MOM section of the FED file.
Check Syntax of the predefined MOM class. 8001
helloWorld: Federate Handle = 13340
Error:RTI::FederateNotExecutionMember : Federate not execution member
13156
Error:RTI::FederateNotExecutionMember : Federate not execution member
13156

 



RTI 1.0 Programmer’s Guide

195

Resolution: Compare the fed_example.fed file that is located in $INSTALL_DIR/rti/config against the
FED file causing the exception.  New releases of the RTI may add MOM classes and
attributes/parameters to the MOM portion of the FED (class Manager).

7. Problem:Error in syntax of Federate portion of the FED file.  This generally occurs when an name is
misspelled or not specified in the file.

 

> helloWorld US 100 10
helloWorld: Federate Handle = 1
ERR RTIfedExMsgHandler::close: failed to remove handler
Error:RTI::NameNotFound : Invalid Attribute Name 5028

 
Resolution: Locate the misspelled or missing name in the FED file and fix it.


